Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1270 Accesses

Abstract

The chapter focusses of some basic ideas in the geometry of Hörmander’s vector fields. We start with a discussion of the basic concept of connectivity, and some of its physical meanings which have been known for a long time. We then pass to survey some ideas and fundamental results about the metric induced by a system of vector fields, which are contained in some papers of the middle 1980’s. This area is by a now an independent field of study, but here we are mainly interested in its relevance in connection with the study of second order PDEs of Hörmander’s type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original paper by Carathéodory is [7], in German. An English translation can be found in the book [25, Chap. 12]. To the reader who is interested in Carathéodory’s ideas on thermodynamics, however, I suggest the reading of some parts of an essay written by Max Born on that subject, see [4, Chap. V and Appendix 6, 7].

  2. 2.

    Recall that one of Hilbert’s problems posed in the international congress of mathematics held in Paris in 1900 consisted in giving an axiomatization of physical theories, following the general trend to axiomatization which pervaded mathematics in those years.

  3. 3.

    Here we follow the simplified presentation of the theory given in [4, Chap. 5]; Carathéodory’s approach is more general and abstract, and involves Pfaffian forms of \(n\) variables.

  4. 4.

    For an overview of the subject I particularly suggest the reading of Jurdjevic’ introduction to his book and the introduction to Chap. 1.

  5. 5.

    A clear example of such control system is rowing a boat on a river: the river’s drift is out of our control.

  6. 6.

    Actually, Gromov in [19, p. 87] suggests that some form of the connectivity theorem could be known to Lagrange in the context of nonholonomic mechanics.

  7. 7.

    The reader will recognize some analogy with the controllability problem for an affine control system with drift, discussed in the previous paragraph.

  8. 8.

    Actually the authors prove the equivalence between five different distances, but here we will concentrate just on two of them.

  9. 9.

    The first use of this term appeared in Gromov’ book of 1981 “Structures métriques pour les variétés riemanniennes” (edited by J. Lafontaine and P. Pansu), later transformed in [20].

  10. 10.

    Gromov refers to the 1981 edition of [20], see the previous footnote.

  11. 11.

    The following bibliographical account is quoted from [5, p. 3].

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, vol. 87. Control Theory and Optimization, II. Springerg, Berlin (2004)

    Google Scholar 

  2. Bloch, A.M.: Nonholonomic mechanics and control. With the collaboration of J. Baillieul, P. Crouch and J. Marsden. With scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov. Interdisciplinary Applied Mathematics, vol. 24. Systems and Control. Springer, New York (2003)

    Google Scholar 

  3. Bony, J.M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19 1969 fasc. 1, 277–304 xii

    Google Scholar 

  4. Born, M.: Natural Philosophy of Cause and Chance. Clarendon Press, Oxford (1948)

    Google Scholar 

  5. Bramanti, M., Brandolini, L., Lanconelli, E., Uguzzoni, F.: Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities. Mem. AMS 204(961), 1–136 (2010)

    MathSciNet  Google Scholar 

  6. Calin, O., Chang, D.-C.: Sub-Riemannian geometry. General theory and examples. Encyclopedia of Mathematics and its Applications, vol. 126. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  7. Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67(3), 355–386 (1909). An English translation can be found in the book [25, Chap. 12]

    Google Scholar 

  8. Chow, W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)

    MathSciNet  Google Scholar 

  9. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differ. Equ. 7(1), 77–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C., Sánchez-Calle, A.: Fundamental solutions for second order subelliptic operators. Ann. Math. (2) 124(2), 247–272 (1986)

    Google Scholar 

  11. Franchi, B.: BV spaces and rectifiability for Carnot-Carathéodory metrics: an introduction. Notes for a course at the Spring School on Nonlinear Analysis, Function Spaces and Applications 7, Prague, July 17–22, 2002. Downloadable at: http://www.mate.polimi.it/scuolaestiva/bibliografia/franchi_corso_NAFSA7.pdf

  12. Franchi, B., Lanconelli, E.: De Giorgi’s theorem for a class of strongly degenerate elliptic equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 72 (1982), no. 5, 273–277 (1983)

    Google Scholar 

  13. Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 523–541 (1983)

    Google Scholar 

  14. Franchi, B., Lanconelli, E.: Une condition géométrique pour l’inégalité de Harnack. J. Math. Pures Appl. (9) 64(3), 237–256 (1985)

    Google Scholar 

  15. Franchi, B., Lanconelli, E.: Une métrique associée à une classe d’opérateurs elliptiques dégénérés. In: Conference on Linear Partial and Pseudodifferential Operators (Torino, 1982). Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 105–114 (1984)

    Google Scholar 

  16. Franchi, B., Lanconelli, E.: An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Comm. Partial Differ. Equ. 9(13), 1237–1264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Franchi, B., Lu, G., Wheeden, R.L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type. Int. Math. Res. Not. 1, 1–14 (1996)

    Google Scholar 

  18. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gromov, M.: Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, pp. 79–323, Progr. Math., 144, Birkhäuser, Basel (1996)

    Google Scholar 

  20. Gromov, M.: Metric structures for Riemannian and Non Riemannian Spaces, Progress in Mathematics, vol. 152. Birkhauser Verlag, Boston (1999)

    Google Scholar 

  21. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688) (2000)

    Google Scholar 

  22. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53(2), 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerison, D., Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35(4), 835–854 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jurdjevic, V.: Geometric control theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  25. Kestin, J. (ed.): The Second Law of Thermodynamics. Dowden, Hutchinson & Ross, Inc. Stroudsburg, Pennsylvania (1976)

    Google Scholar 

  26. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(2), 391–442 (1987)

    Google Scholar 

  27. Kusuoka, S., Stroock, D.: Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator. Ann. Math. (2) 127(1), 165–189 (1988)

    Google Scholar 

  28. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

    Google Scholar 

  29. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Automat. Control 38(5), 700–716 (1993)

    Google Scholar 

  30. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1–2), 103–147 (1985)

    Google Scholar 

  31. Rashevski, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Mat. 2, 83–94 (1938)

    Google Scholar 

  32. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  33. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices , no. 2, 27–38 (1992)

    Google Scholar 

  34. Saloff-Coste, L., Stroock, D.W.: Opérateurs uniformément sous-elliptiques sur les groupes de Lie. J. Funct. Anal. 98(1), 97–121 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78(1), 143–160 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sawyer, E.T., Wheeden, R.L.: Hölder continuity of weak solutions to subelliptic equations with rough coefficients. Mem. Am. Math. Soc. 180(847) (2006)

    Google Scholar 

  37. Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  38. Varopoulos, N.Th.: Analysis on nilpotent groups. J. Funct. Anal. 66(3), 406–431 (1986)

    Google Scholar 

  39. Varopoulos, N.Th.: Théorie du potentiel sur les groupes nilpotents. C. R. Acad. Sci. Paris Sér. I Math. 301(5), 143–144 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bramanti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Bramanti, M. (2014). Geometry of Hörmander’s Vector Fields. In: An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-02087-7_4

Download citation

Publish with us

Policies and ethics