Superconducting Tungsten-Based Nanodeposits Grown by Focused Ion Beam Induced Deposition

  • Rosa Córdoba CastilloEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we present the fabrication and characterization of superconducting tungsten nanodeposits grown by focused ion beam induced deposition. First, we study the influence of some deposition parameters, such as ion beam voltage, ion beam current, and incidence angle of the focused ion beam, on the nanodeposits’ composition. Second, we present the superconducting properties of tungsten deposits of varying width, from microwires to ultranarrow nanowires of 50 nm width, by means of magnetotransport measurements. Finally, we study the nonlocal voltage generated in tungsten nanowires by nonlocal magnetotransport measurements. The results allow us to link this kind of superconducting nanostructures to potential applications in nanotechnology.


Applied Magnetic Field Critical Current Density Bias Current Vortex Lattice Tungsten Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Langfischer, H., Basnar, B., Hutter, H., Bertagnolli, E.: Evolution of tungsten film deposition induced by focused ion beam. J. Vac. Sci. Technol. A—Vac. Surf. Films, 20(4), 1408–1415 (2002)Google Scholar
  2. 2.
    Muthukumar, K., Opahle, I., Shen, J., Jeschke, H. O., Valenti, R.: Interaction of W(CO)6 with SiO2 surfaces: a density functional study. Phys. Rev. B, 84(20), 205442 (2011)Google Scholar
  3. 3.
    Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Collver, M.M., Hammond, R.H.: Superconductivity in amorphous transition-metal alloy films. Phys. Rev. Lett. 30(3), 92–95 (1973)ADSCrossRefGoogle Scholar
  5. 5.
    Kondo, S.: Superconducting characteristics and the thermal-stability of tungsten-based amorphous thin-films. J. Mater. Res. 7(4), 853–860 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Miki, H., Takeno, T., Takagi, T., Bozhko, A., Shupegin, M., Onodera, H., Komiyama, T., Aoyama, T.: Superconductivity in W-containing diamond-like nanocomposite films. Diam. Relat. Mater. 15(11–12), 1898–1901 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Osofsky, M.S., Soulen, R.J., Claassen, J.H., Trotter, G., Kim, H., Horwitz, J.S.: New insight into enhanced superconductivity in metals near the metal–insulator transition. Phys. Rev. Lett., 87(19), 197004 (2001)Google Scholar
  8. 8.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover Publications, Inc., New York (1996)Google Scholar
  9. 9.
    Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., Jefferson, J.H.: Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515(17), 6791–6797 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Spoddig, D., Schindler, K., Roediger, P., Barzola-Quiquia, J., Fritsch, K., Mulders, H., Esquinazi, P.: Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 18(49), 495202 (2007)Google Scholar
  11. 11.
    Li, W.X., Fenton, J.C., Wang, Y.Q., McComb, D.W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys., 104(9), 093913 (2008)Google Scholar
  12. 12.
    Li, W., Fenton, J.C., Warburton, P.A.: Focused-ion-beam direct-writing of ultra-thin superconducting tungsten composite films. IEEE Trans. Appl. Supercond. 19(3), 2819–2822 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Martínez-Pérez, M. J., Sesé, J., Córdoba, R., Luis, F., Drung, D., Schuring, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Technol. 22(12), 125020 (2009)Google Scholar
  14. 14.
    Martínez-Pérez, M.J., Sesé, J., Luis, F., Córdoba, R., Drung, D., Schurig, T., Bellido, E., de Miguel, R., Gomez-Moreno, C., Lostao, A., Ruiz-Molina, D.: Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21(3), 345–348 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Martínez-Pérez, M. J., Sesé, J., Luis, F., Drung, D., Schurig, T.: Highly sensitive superconducting quantum interference device microsusceptometers operating at high frequencies and very low temperatures inside the mixing chamber of a dilution refrigerator. Rev. Sci. Instr. 81(1), 016108 (2010)Google Scholar
  16. 16.
    Li, W., Fenton, J.C., Gu, C., Warburton, P.A.: Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing. Microelectron. Eng. 88(8), 2636–2638 (2011)CrossRefGoogle Scholar
  17. 17.
    Cui, A., Li, W., Luo, Q., Liu, Z., Gu, C.: Freestanding nanostructures for three-dimensional superconducting nanodevices. Appl. Phys. Lett. 100(14), 143106 (2012)Google Scholar
  18. 18.
    Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10(9), 093005 (2008). doi: 10.1088/1367-2630/10/9/093005
  19. 19.
    Guillamón, I., et al.: Superconducting density of states at the border of an amorphous thin film grown by focused-ion-beam. J. Phys.: Conf. Ser. 150(5), 052064 (2009)Google Scholar
  20. 20.
    Guillamón, I., Suderow, H., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R., Vieira, S.: Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5(9), 651–655 (2009). doi: 10.1038/NPHYS1368 CrossRefGoogle Scholar
  21. 21.
    Guillamón, I., Suderow, H., Vieira, S., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Direct observation of stress accumulation and relaxation in small bundles of superconducting vortices in tungsten thin films. Phys. Rev. Lett. 106 (7), 077001 (2011)Google Scholar
  22. 22.
    Kes, P.H., Tsuei, C.C.: Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films. Phys. Rev. B 28(9), 5126–5139 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    Guillamón, I.: Orden y desorden en superconductividad. Thesis, Universidad Autónoma de Madrid (2009)Google Scholar
  24. 24.
    Ziegler, J.F.: SRIM-2003. Nucl. Instrum. Methods Phys. Res. Sect. B 219–220, 1027–1036 (2004)CrossRefGoogle Scholar
  25. 25.
    Tripathi, S.K., Shukla, N., Kulkarni, V.N.: Exploring a new strategy for nanofabrication: deposition by scattered Ga ions using focused ion beam. Nanotechnology 20(7), 075304 (2009)Google Scholar
  26. 26.
    Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams, p. 357. Springer, Boston (2005)CrossRefGoogle Scholar
  27. 27.
    Sychugov, I., Nakayama, Y., Mitsuishi, K.: Manifold enhancement of electron beam induced deposition rate at grazing incidence. Nanotechnology 21 (2), 025303 (2010)Google Scholar
  28. 28.
    Li, J.T., Toth, M., Tileli, V., Dunn, K.A., Lobo, C.J., Thiel, B.L.: Evolution of the nanostructure of deposits grown by electron beam induced deposition. Appl. Phys. Lett. 93 (2), 23130 (2008)Google Scholar
  29. 29.
    Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., Li, W.: Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl. Phys. Lett. 97 (22), 222506 (2010)Google Scholar
  30. 30.
    De Teresa, J. M., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180 (2009)Google Scholar
  31. 31.
    Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M. R.: Metal–insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79 (17), 174204 (2009)Google Scholar
  32. 32.
    De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt Nanodeposits. J. Nanomater. 2009, 936863 (2009)CrossRefGoogle Scholar
  33. 33.
    Kunchur, M.N.: Unstable flux flow due to heated electrons in superconducting films. Phys. Rev. Lett. 89(13), 137005 (2002)Google Scholar
  34. 34.
    Babic, D.: Amorphous Nb-Ge thin films as a model system for experiments on fundamental properties of vortex transport. In: Martins, B.S. (ed.) New Frontiers in Superconductivity Research, pp. 107–143. Nova Science Publishers, Hauppauge (2006)Google Scholar
  35. 35.
    Babic, D., Bentner, J., Surgers, C., Strunk, C.: Flux-flow instabilities in amorphous Nb0.7Ge0.3 microbridges. Phys. Rev. B 69(9), 092510 (2004)Google Scholar
  36. 36.
    Córdoba, R., Baturina, T.I., Sesé, J., Mironov, A.Y., De Teresa, J.M., Ibarra, M.R., Nasimov, D.A., Gutakovskii, A.K., Latyshev, A.V., Guillamón, I., Suderow, H., Vieira, S., Baklanov, M.R., Palacios, J.J., Vinokur, V.M.: Magnetic field-induced dissipation-free state in superconducting nanostructures. Nat. Commun. 4, 1437 (2013). doi: 10.1038/ncomms2437 CrossRefGoogle Scholar
  37. 37.
    Saint-James, D., De Gennes, P.: Onset of superconductivity in decreasing fields. Phys. Lett. 7, 306 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    Palacios, J.J.: Vortex lattices in strong type-II superconducting two-dimensional strips. Phys. Rev. B 57(17), 10873–10876 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    Fink, H.J.: Superconducting surface sheath of a type-2 superconductor below upper critical field Hc2. Phys. Rev. Lett. 14(9), 309 (1965)Google Scholar
  40. 40.
    Kuit, K.H., Kirtley, J.R., van der Veur, W., Molenaar, C.G., Roesthuis, F.J.G., Troeman, A.G.P., Clem, J.R., Hilgenkamp, H., Rogalla, H., Flokstra, J.: Vortex trapping and expulsion in thin-film YBa2Cu3O7–δ strips. Phys. Rev. B 77(13), 134504 (2008)Google Scholar
  41. 41.
    Aranson, I., Vinokur, V.: Surface instabilities and vortex transport in current-carrying superconductors. Phys. Rev. B 57(5), 3073–3083 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Anderson, P.W.: Considerations on flow of superfluid helium. Rev. Mod. Phys. 38(2), 298–310 (1966)ADSCrossRefGoogle Scholar
  43. 43.
    Takacs, S.: Properties of superfine superconducting filaments embedded in normal matrix. Czech J. Phys. 36(4), 524–536 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    Tahara, S., Anlage, S.M., Halbritter, J., Eom, C.-B., Fork, D.K., Geballe, T.H., Beasley, M.R.: Critical currents, pinning, and edge barriers in narrow YBa2Cu3O7–δ thin films. Phys. Rev. B 41(16), 11203–11208 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    Jones, W.A., Barnes, P.N., Mullins, M.J., Baca, F.J., Emergo, R.L.S., Wu, J., Haugan, T.J., Clem, J.R.: Impact of edge-barrier pinning in superconducting thin films. Appl. Phys. Lett. 97 (26), 262503 (2010)Google Scholar
  46. 46.
    Elistratov, A.A., Vodolazov, D.Y., Maksimov, I.L., Clem, J.R.: Field-dependent critical current in type-II superconducting strips: combined effect of bulk pinning and geometrical edge barrier. Phys. Rev. B 66(22), 220506 (2002)Google Scholar
  47. 47.
    Helzel, A., Kokanovic, I., Babic, D., Litvin, L.V., Rohlfing, F., Otto, F., Surgers, C., Strunk, C.: Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures. Phys. Rev. B 74 (22), 220510 (2006)Google Scholar
  48. 48.
    Otto, F.: Nonlinear vortex transport in mesoscopic channel of amorphous NbGe. Thesis, Universitätsverlag Regensburg (2009)Google Scholar
  49. 49.
    Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Nonlocal versus local vortex dynamics in the transversal flux transformer effect. Phys. Rev. B 81 (17), 174521 (2010)Google Scholar
  50. 50.
    Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Reversal of nonlocal vortex motion in the regime of strong nonequilibrium. Phys. Rev. Lett. 104(2), 027005 (2010)Google Scholar
  51. 51.
    Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S., De Teresa, J.M.: Non local voltage in W-based nanowires grown by Focused Ion Beam Induced Deposition, manuscript in preparation Google Scholar
  52. 52.
    Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep.—Rev. Sect. Phys. Lett. 464(1–2), 1–70 (2008)Google Scholar
  53. 53.
    Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Symmetry-induced formation of antivortices in mesoscopic superconductors. Nature 408(6814), 833–835 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    Grigorieva, I.V., Geim, A.K., Dubonos, S.V., Novoselov, K.S., Vodolazov, D.Y., Peeters, F.M., Kes, P.H., Hesselberth, M.: Long-range nonlocal flow of vortices in narrow superconducting channels. Phys. Rev. Lett. 92(23), 237001 (2004)Google Scholar
  55. 55.
    Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320(21), 2547–2562 (2008)CrossRefGoogle Scholar
  56. 56.
    Foley, C.P., Hilgenkamp, H.: Why NanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22(6), 064001 (2009)Google Scholar
  57. 57.
    Hao, L., Macfarlane, J.C., Gallop, J.C., Cox, D., Beyer, J., Drung, D., Schurig, T.: Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett. 92(19), 192507 (2008)Google Scholar
  58. 58.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Gol’tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C., Sobolewski, R.: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)Google Scholar
  60. 60.
    Najafi, F., Marsili, F., Dauler, E., Molnar, R.J., Berggren, K.K.: Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100(15), 152602 (2012)Google Scholar
  61. 61.
    Sclafani, M., Marksteiner, M., Keir, F.M., Divochiy, A., Korneev, A., Semenov, A., Gol’tsman, G., Arndt, M.: Sensitivity of a superconducting nanowire detector for single ions at low energy. Nanotechnology 23(6), 065501 (2012)Google Scholar
  62. 62.
    Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratorio de Microscopías Avanzadas-Instituto de Nanociencia de Aragón; Department of Condensed Matter PhysicsUniversidad de ZaragozaZaragozaSpain

Personalised recommendations