Skip to main content

Superconducting Tungsten-Based Nanodeposits Grown by Focused Ion Beam Induced Deposition

  • Chapter
  • First Online:
Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition

Part of the book series: Springer Theses ((Springer Theses))

  • 804 Accesses

Abstract

In this chapter we present the fabrication and characterization of superconducting tungsten nanodeposits grown by focused ion beam induced deposition. First, we study the influence of some deposition parameters, such as ion beam voltage, ion beam current, and incidence angle of the focused ion beam, on the nanodeposits’ composition. Second, we present the superconducting properties of tungsten deposits of varying width, from microwires to ultranarrow nanowires of 50 nm width, by means of magnetotransport measurements. Finally, we study the nonlocal voltage generated in tungsten nanowires by nonlocal magnetotransport measurements. The results allow us to link this kind of superconducting nanostructures to potential applications in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langfischer, H., Basnar, B., Hutter, H., Bertagnolli, E.: Evolution of tungsten film deposition induced by focused ion beam. J. Vac. Sci. Technol. A—Vac. Surf. Films, 20(4), 1408–1415 (2002)

    Google Scholar 

  2. Muthukumar, K., Opahle, I., Shen, J., Jeschke, H. O., Valenti, R.: Interaction of W(CO)6 with SiO2 surfaces: a density functional study. Phys. Rev. B, 84(20), 205442 (2011)

    Google Scholar 

  3. Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004)

    Article  ADS  Google Scholar 

  4. Collver, M.M., Hammond, R.H.: Superconductivity in amorphous transition-metal alloy films. Phys. Rev. Lett. 30(3), 92–95 (1973)

    Article  ADS  Google Scholar 

  5. Kondo, S.: Superconducting characteristics and the thermal-stability of tungsten-based amorphous thin-films. J. Mater. Res. 7(4), 853–860 (1992)

    Article  ADS  Google Scholar 

  6. Miki, H., Takeno, T., Takagi, T., Bozhko, A., Shupegin, M., Onodera, H., Komiyama, T., Aoyama, T.: Superconductivity in W-containing diamond-like nanocomposite films. Diam. Relat. Mater. 15(11–12), 1898–1901 (2006)

    Article  ADS  Google Scholar 

  7. Osofsky, M.S., Soulen, R.J., Claassen, J.H., Trotter, G., Kim, H., Horwitz, J.S.: New insight into enhanced superconductivity in metals near the metal–insulator transition. Phys. Rev. Lett., 87(19), 197004 (2001)

    Google Scholar 

  8. Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover Publications, Inc., New York (1996)

    Google Scholar 

  9. Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., Jefferson, J.H.: Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515(17), 6791–6797 (2007)

    Article  ADS  Google Scholar 

  10. Spoddig, D., Schindler, K., Roediger, P., Barzola-Quiquia, J., Fritsch, K., Mulders, H., Esquinazi, P.: Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 18(49), 495202 (2007)

    Google Scholar 

  11. Li, W.X., Fenton, J.C., Wang, Y.Q., McComb, D.W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys., 104(9), 093913 (2008)

    Google Scholar 

  12. Li, W., Fenton, J.C., Warburton, P.A.: Focused-ion-beam direct-writing of ultra-thin superconducting tungsten composite films. IEEE Trans. Appl. Supercond. 19(3), 2819–2822 (2009)

    Article  ADS  Google Scholar 

  13. Martínez-Pérez, M. J., Sesé, J., Córdoba, R., Luis, F., Drung, D., Schuring, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Technol. 22(12), 125020 (2009)

    Google Scholar 

  14. Martínez-Pérez, M.J., Sesé, J., Luis, F., Córdoba, R., Drung, D., Schurig, T., Bellido, E., de Miguel, R., Gomez-Moreno, C., Lostao, A., Ruiz-Molina, D.: Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21(3), 345–348 (2011)

    Article  ADS  Google Scholar 

  15. Martínez-Pérez, M. J., Sesé, J., Luis, F., Drung, D., Schurig, T.: Highly sensitive superconducting quantum interference device microsusceptometers operating at high frequencies and very low temperatures inside the mixing chamber of a dilution refrigerator. Rev. Sci. Instr. 81(1), 016108 (2010)

    Google Scholar 

  16. Li, W., Fenton, J.C., Gu, C., Warburton, P.A.: Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing. Microelectron. Eng. 88(8), 2636–2638 (2011)

    Article  Google Scholar 

  17. Cui, A., Li, W., Luo, Q., Liu, Z., Gu, C.: Freestanding nanostructures for three-dimensional superconducting nanodevices. Appl. Phys. Lett. 100(14), 143106 (2012)

    Google Scholar 

  18. Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10(9), 093005 (2008). doi:10.1088/1367-2630/10/9/093005

  19. Guillamón, I., et al.: Superconducting density of states at the border of an amorphous thin film grown by focused-ion-beam. J. Phys.: Conf. Ser. 150(5), 052064 (2009)

    Google Scholar 

  20. Guillamón, I., Suderow, H., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R., Vieira, S.: Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5(9), 651–655 (2009). doi:10.1038/NPHYS1368

    Article  Google Scholar 

  21. Guillamón, I., Suderow, H., Vieira, S., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Direct observation of stress accumulation and relaxation in small bundles of superconducting vortices in tungsten thin films. Phys. Rev. Lett. 106 (7), 077001 (2011)

    Google Scholar 

  22. Kes, P.H., Tsuei, C.C.: Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films. Phys. Rev. B 28(9), 5126–5139 (1983)

    Article  ADS  Google Scholar 

  23. Guillamón, I.: Orden y desorden en superconductividad. Thesis, Universidad Autónoma de Madrid (2009)

    Google Scholar 

  24. Ziegler, J.F.: SRIM-2003. Nucl. Instrum. Methods Phys. Res. Sect. B 219–220, 1027–1036 (2004)

    Article  Google Scholar 

  25. Tripathi, S.K., Shukla, N., Kulkarni, V.N.: Exploring a new strategy for nanofabrication: deposition by scattered Ga ions using focused ion beam. Nanotechnology 20(7), 075304 (2009)

    Google Scholar 

  26. Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams, p. 357. Springer, Boston (2005)

    Book  Google Scholar 

  27. Sychugov, I., Nakayama, Y., Mitsuishi, K.: Manifold enhancement of electron beam induced deposition rate at grazing incidence. Nanotechnology 21 (2), 025303 (2010)

    Google Scholar 

  28. Li, J.T., Toth, M., Tileli, V., Dunn, K.A., Lobo, C.J., Thiel, B.L.: Evolution of the nanostructure of deposits grown by electron beam induced deposition. Appl. Phys. Lett. 93 (2), 23130 (2008)

    Google Scholar 

  29. Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., Li, W.: Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl. Phys. Lett. 97 (22), 222506 (2010)

    Google Scholar 

  30. De Teresa, J. M., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180 (2009)

    Google Scholar 

  31. Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M. R.: Metal–insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79 (17), 174204 (2009)

    Google Scholar 

  32. De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt Nanodeposits. J. Nanomater. 2009, 936863 (2009)

    Article  Google Scholar 

  33. Kunchur, M.N.: Unstable flux flow due to heated electrons in superconducting films. Phys. Rev. Lett. 89(13), 137005 (2002)

    Google Scholar 

  34. Babic, D.: Amorphous Nb-Ge thin films as a model system for experiments on fundamental properties of vortex transport. In: Martins, B.S. (ed.) New Frontiers in Superconductivity Research, pp. 107–143. Nova Science Publishers, Hauppauge (2006)

    Google Scholar 

  35. Babic, D., Bentner, J., Surgers, C., Strunk, C.: Flux-flow instabilities in amorphous Nb0.7Ge0.3 microbridges. Phys. Rev. B 69(9), 092510 (2004)

    Google Scholar 

  36. Córdoba, R., Baturina, T.I., Sesé, J., Mironov, A.Y., De Teresa, J.M., Ibarra, M.R., Nasimov, D.A., Gutakovskii, A.K., Latyshev, A.V., Guillamón, I., Suderow, H., Vieira, S., Baklanov, M.R., Palacios, J.J., Vinokur, V.M.: Magnetic field-induced dissipation-free state in superconducting nanostructures. Nat. Commun. 4, 1437 (2013). doi:10.1038/ncomms2437

    Article  Google Scholar 

  37. Saint-James, D., De Gennes, P.: Onset of superconductivity in decreasing fields. Phys. Lett. 7, 306 (1963)

    Article  ADS  Google Scholar 

  38. Palacios, J.J.: Vortex lattices in strong type-II superconducting two-dimensional strips. Phys. Rev. B 57(17), 10873–10876 (1998)

    Article  ADS  Google Scholar 

  39. Fink, H.J.: Superconducting surface sheath of a type-2 superconductor below upper critical field Hc2. Phys. Rev. Lett. 14(9), 309 (1965)

    Google Scholar 

  40. Kuit, K.H., Kirtley, J.R., van der Veur, W., Molenaar, C.G., Roesthuis, F.J.G., Troeman, A.G.P., Clem, J.R., Hilgenkamp, H., Rogalla, H., Flokstra, J.: Vortex trapping and expulsion in thin-film YBa2Cu3O7–δ strips. Phys. Rev. B 77(13), 134504 (2008)

    Google Scholar 

  41. Aranson, I., Vinokur, V.: Surface instabilities and vortex transport in current-carrying superconductors. Phys. Rev. B 57(5), 3073–3083 (1998)

    Article  ADS  Google Scholar 

  42. Anderson, P.W.: Considerations on flow of superfluid helium. Rev. Mod. Phys. 38(2), 298–310 (1966)

    Article  ADS  Google Scholar 

  43. Takacs, S.: Properties of superfine superconducting filaments embedded in normal matrix. Czech J. Phys. 36(4), 524–536 (1986)

    Article  ADS  Google Scholar 

  44. Tahara, S., Anlage, S.M., Halbritter, J., Eom, C.-B., Fork, D.K., Geballe, T.H., Beasley, M.R.: Critical currents, pinning, and edge barriers in narrow YBa2Cu3O7–δ thin films. Phys. Rev. B 41(16), 11203–11208 (1990)

    Article  ADS  Google Scholar 

  45. Jones, W.A., Barnes, P.N., Mullins, M.J., Baca, F.J., Emergo, R.L.S., Wu, J., Haugan, T.J., Clem, J.R.: Impact of edge-barrier pinning in superconducting thin films. Appl. Phys. Lett. 97 (26), 262503 (2010)

    Google Scholar 

  46. Elistratov, A.A., Vodolazov, D.Y., Maksimov, I.L., Clem, J.R.: Field-dependent critical current in type-II superconducting strips: combined effect of bulk pinning and geometrical edge barrier. Phys. Rev. B 66(22), 220506 (2002)

    Google Scholar 

  47. Helzel, A., Kokanovic, I., Babic, D., Litvin, L.V., Rohlfing, F., Otto, F., Surgers, C., Strunk, C.: Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures. Phys. Rev. B 74 (22), 220510 (2006)

    Google Scholar 

  48. Otto, F.: Nonlinear vortex transport in mesoscopic channel of amorphous NbGe. Thesis, Universitätsverlag Regensburg (2009)

    Google Scholar 

  49. Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Nonlocal versus local vortex dynamics in the transversal flux transformer effect. Phys. Rev. B 81 (17), 174521 (2010)

    Google Scholar 

  50. Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Reversal of nonlocal vortex motion in the regime of strong nonequilibrium. Phys. Rev. Lett. 104(2), 027005 (2010)

    Google Scholar 

  51. Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S., De Teresa, J.M.: Non local voltage in W-based nanowires grown by Focused Ion Beam Induced Deposition, manuscript in preparation

    Google Scholar 

  52. Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep.—Rev. Sect. Phys. Lett. 464(1–2), 1–70 (2008)

    Google Scholar 

  53. Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Symmetry-induced formation of antivortices in mesoscopic superconductors. Nature 408(6814), 833–835 (2000)

    Article  ADS  Google Scholar 

  54. Grigorieva, I.V., Geim, A.K., Dubonos, S.V., Novoselov, K.S., Vodolazov, D.Y., Peeters, F.M., Kes, P.H., Hesselberth, M.: Long-range nonlocal flow of vortices in narrow superconducting channels. Phys. Rev. Lett. 92(23), 237001 (2004)

    Google Scholar 

  55. Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320(21), 2547–2562 (2008)

    Article  Google Scholar 

  56. Foley, C.P., Hilgenkamp, H.: Why NanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22(6), 064001 (2009)

    Google Scholar 

  57. Hao, L., Macfarlane, J.C., Gallop, J.C., Cox, D., Beyer, J., Drung, D., Schurig, T.: Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett. 92(19), 192507 (2008)

    Google Scholar 

  58. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)

    Article  ADS  Google Scholar 

  59. Gol’tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C., Sobolewski, R.: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)

    Google Scholar 

  60. Najafi, F., Marsili, F., Dauler, E., Molnar, R.J., Berggren, K.K.: Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100(15), 152602 (2012)

    Google Scholar 

  61. Sclafani, M., Marksteiner, M., Keir, F.M., Divochiy, A., Korneev, A., Semenov, A., Gol’tsman, G., Arndt, M.: Sensitivity of a superconducting nanowire detector for single ions at low energy. Nanotechnology 23(6), 065501 (2012)

    Google Scholar 

  62. Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Córdoba Castillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Córdoba Castillo, R. (2014). Superconducting Tungsten-Based Nanodeposits Grown by Focused Ion Beam Induced Deposition. In: Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02081-5_5

Download citation

Publish with us

Policies and ethics