Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition pp 95-132 | Cite as
Superconducting Tungsten-Based Nanodeposits Grown by Focused Ion Beam Induced Deposition
- 654 Downloads
Abstract
In this chapter we present the fabrication and characterization of superconducting tungsten nanodeposits grown by focused ion beam induced deposition. First, we study the influence of some deposition parameters, such as ion beam voltage, ion beam current, and incidence angle of the focused ion beam, on the nanodeposits’ composition. Second, we present the superconducting properties of tungsten deposits of varying width, from microwires to ultranarrow nanowires of 50 nm width, by means of magnetotransport measurements. Finally, we study the nonlocal voltage generated in tungsten nanowires by nonlocal magnetotransport measurements. The results allow us to link this kind of superconducting nanostructures to potential applications in nanotechnology.
Keywords
Applied Magnetic Field Critical Current Density Bias Current Vortex Lattice Tungsten DepositReferences
- 1.Langfischer, H., Basnar, B., Hutter, H., Bertagnolli, E.: Evolution of tungsten film deposition induced by focused ion beam. J. Vac. Sci. Technol. A—Vac. Surf. Films, 20(4), 1408–1415 (2002)Google Scholar
- 2.Muthukumar, K., Opahle, I., Shen, J., Jeschke, H. O., Valenti, R.: Interaction of W(CO)6 with SiO2 surfaces: a density functional study. Phys. Rev. B, 84(20), 205442 (2011)Google Scholar
- 3.Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004)ADSCrossRefGoogle Scholar
- 4.Collver, M.M., Hammond, R.H.: Superconductivity in amorphous transition-metal alloy films. Phys. Rev. Lett. 30(3), 92–95 (1973)ADSCrossRefGoogle Scholar
- 5.Kondo, S.: Superconducting characteristics and the thermal-stability of tungsten-based amorphous thin-films. J. Mater. Res. 7(4), 853–860 (1992)ADSCrossRefGoogle Scholar
- 6.Miki, H., Takeno, T., Takagi, T., Bozhko, A., Shupegin, M., Onodera, H., Komiyama, T., Aoyama, T.: Superconductivity in W-containing diamond-like nanocomposite films. Diam. Relat. Mater. 15(11–12), 1898–1901 (2006)ADSCrossRefGoogle Scholar
- 7.Osofsky, M.S., Soulen, R.J., Claassen, J.H., Trotter, G., Kim, H., Horwitz, J.S.: New insight into enhanced superconductivity in metals near the metal–insulator transition. Phys. Rev. Lett., 87(19), 197004 (2001)Google Scholar
- 8.Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover Publications, Inc., New York (1996)Google Scholar
- 9.Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., Jefferson, J.H.: Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515(17), 6791–6797 (2007)ADSCrossRefGoogle Scholar
- 10.Spoddig, D., Schindler, K., Roediger, P., Barzola-Quiquia, J., Fritsch, K., Mulders, H., Esquinazi, P.: Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 18(49), 495202 (2007)Google Scholar
- 11.Li, W.X., Fenton, J.C., Wang, Y.Q., McComb, D.W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys., 104(9), 093913 (2008)Google Scholar
- 12.Li, W., Fenton, J.C., Warburton, P.A.: Focused-ion-beam direct-writing of ultra-thin superconducting tungsten composite films. IEEE Trans. Appl. Supercond. 19(3), 2819–2822 (2009)ADSCrossRefGoogle Scholar
- 13.Martínez-Pérez, M. J., Sesé, J., Córdoba, R., Luis, F., Drung, D., Schuring, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Technol. 22(12), 125020 (2009)Google Scholar
- 14.Martínez-Pérez, M.J., Sesé, J., Luis, F., Córdoba, R., Drung, D., Schurig, T., Bellido, E., de Miguel, R., Gomez-Moreno, C., Lostao, A., Ruiz-Molina, D.: Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21(3), 345–348 (2011)ADSCrossRefGoogle Scholar
- 15.Martínez-Pérez, M. J., Sesé, J., Luis, F., Drung, D., Schurig, T.: Highly sensitive superconducting quantum interference device microsusceptometers operating at high frequencies and very low temperatures inside the mixing chamber of a dilution refrigerator. Rev. Sci. Instr. 81(1), 016108 (2010)Google Scholar
- 16.Li, W., Fenton, J.C., Gu, C., Warburton, P.A.: Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing. Microelectron. Eng. 88(8), 2636–2638 (2011)CrossRefGoogle Scholar
- 17.Cui, A., Li, W., Luo, Q., Liu, Z., Gu, C.: Freestanding nanostructures for three-dimensional superconducting nanodevices. Appl. Phys. Lett. 100(14), 143106 (2012)Google Scholar
- 18.Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10(9), 093005 (2008). doi: 10.1088/1367-2630/10/9/093005
- 19.Guillamón, I., et al.: Superconducting density of states at the border of an amorphous thin film grown by focused-ion-beam. J. Phys.: Conf. Ser. 150(5), 052064 (2009)Google Scholar
- 20.Guillamón, I., Suderow, H., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R., Vieira, S.: Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5(9), 651–655 (2009). doi: 10.1038/NPHYS1368 CrossRefGoogle Scholar
- 21.Guillamón, I., Suderow, H., Vieira, S., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Direct observation of stress accumulation and relaxation in small bundles of superconducting vortices in tungsten thin films. Phys. Rev. Lett. 106 (7), 077001 (2011)Google Scholar
- 22.Kes, P.H., Tsuei, C.C.: Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films. Phys. Rev. B 28(9), 5126–5139 (1983)ADSCrossRefGoogle Scholar
- 23.Guillamón, I.: Orden y desorden en superconductividad. Thesis, Universidad Autónoma de Madrid (2009)Google Scholar
- 24.Ziegler, J.F.: SRIM-2003. Nucl. Instrum. Methods Phys. Res. Sect. B 219–220, 1027–1036 (2004)CrossRefGoogle Scholar
- 25.Tripathi, S.K., Shukla, N., Kulkarni, V.N.: Exploring a new strategy for nanofabrication: deposition by scattered Ga ions using focused ion beam. Nanotechnology 20(7), 075304 (2009)Google Scholar
- 26.Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams, p. 357. Springer, Boston (2005)CrossRefGoogle Scholar
- 27.Sychugov, I., Nakayama, Y., Mitsuishi, K.: Manifold enhancement of electron beam induced deposition rate at grazing incidence. Nanotechnology 21 (2), 025303 (2010)Google Scholar
- 28.Li, J.T., Toth, M., Tileli, V., Dunn, K.A., Lobo, C.J., Thiel, B.L.: Evolution of the nanostructure of deposits grown by electron beam induced deposition. Appl. Phys. Lett. 93 (2), 23130 (2008)Google Scholar
- 29.Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., Li, W.: Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl. Phys. Lett. 97 (22), 222506 (2010)Google Scholar
- 30.De Teresa, J. M., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180 (2009)Google Scholar
- 31.Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M. R.: Metal–insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79 (17), 174204 (2009)Google Scholar
- 32.De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt Nanodeposits. J. Nanomater. 2009, 936863 (2009)CrossRefGoogle Scholar
- 33.Kunchur, M.N.: Unstable flux flow due to heated electrons in superconducting films. Phys. Rev. Lett. 89(13), 137005 (2002)Google Scholar
- 34.Babic, D.: Amorphous Nb-Ge thin films as a model system for experiments on fundamental properties of vortex transport. In: Martins, B.S. (ed.) New Frontiers in Superconductivity Research, pp. 107–143. Nova Science Publishers, Hauppauge (2006)Google Scholar
- 35.Babic, D., Bentner, J., Surgers, C., Strunk, C.: Flux-flow instabilities in amorphous Nb0.7Ge0.3 microbridges. Phys. Rev. B 69(9), 092510 (2004)Google Scholar
- 36.Córdoba, R., Baturina, T.I., Sesé, J., Mironov, A.Y., De Teresa, J.M., Ibarra, M.R., Nasimov, D.A., Gutakovskii, A.K., Latyshev, A.V., Guillamón, I., Suderow, H., Vieira, S., Baklanov, M.R., Palacios, J.J., Vinokur, V.M.: Magnetic field-induced dissipation-free state in superconducting nanostructures. Nat. Commun. 4, 1437 (2013). doi: 10.1038/ncomms2437 CrossRefGoogle Scholar
- 37.Saint-James, D., De Gennes, P.: Onset of superconductivity in decreasing fields. Phys. Lett. 7, 306 (1963)ADSCrossRefGoogle Scholar
- 38.Palacios, J.J.: Vortex lattices in strong type-II superconducting two-dimensional strips. Phys. Rev. B 57(17), 10873–10876 (1998)ADSCrossRefGoogle Scholar
- 39.Fink, H.J.: Superconducting surface sheath of a type-2 superconductor below upper critical field Hc2. Phys. Rev. Lett. 14(9), 309 (1965)Google Scholar
- 40.Kuit, K.H., Kirtley, J.R., van der Veur, W., Molenaar, C.G., Roesthuis, F.J.G., Troeman, A.G.P., Clem, J.R., Hilgenkamp, H., Rogalla, H., Flokstra, J.: Vortex trapping and expulsion in thin-film YBa2Cu3O7–δ strips. Phys. Rev. B 77(13), 134504 (2008)Google Scholar
- 41.Aranson, I., Vinokur, V.: Surface instabilities and vortex transport in current-carrying superconductors. Phys. Rev. B 57(5), 3073–3083 (1998)ADSCrossRefGoogle Scholar
- 42.Anderson, P.W.: Considerations on flow of superfluid helium. Rev. Mod. Phys. 38(2), 298–310 (1966)ADSCrossRefGoogle Scholar
- 43.Takacs, S.: Properties of superfine superconducting filaments embedded in normal matrix. Czech J. Phys. 36(4), 524–536 (1986)ADSCrossRefGoogle Scholar
- 44.Tahara, S., Anlage, S.M., Halbritter, J., Eom, C.-B., Fork, D.K., Geballe, T.H., Beasley, M.R.: Critical currents, pinning, and edge barriers in narrow YBa2Cu3O7–δ thin films. Phys. Rev. B 41(16), 11203–11208 (1990)ADSCrossRefGoogle Scholar
- 45.Jones, W.A., Barnes, P.N., Mullins, M.J., Baca, F.J., Emergo, R.L.S., Wu, J., Haugan, T.J., Clem, J.R.: Impact of edge-barrier pinning in superconducting thin films. Appl. Phys. Lett. 97 (26), 262503 (2010)Google Scholar
- 46.Elistratov, A.A., Vodolazov, D.Y., Maksimov, I.L., Clem, J.R.: Field-dependent critical current in type-II superconducting strips: combined effect of bulk pinning and geometrical edge barrier. Phys. Rev. B 66(22), 220506 (2002)Google Scholar
- 47.Helzel, A., Kokanovic, I., Babic, D., Litvin, L.V., Rohlfing, F., Otto, F., Surgers, C., Strunk, C.: Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures. Phys. Rev. B 74 (22), 220510 (2006)Google Scholar
- 48.Otto, F.: Nonlinear vortex transport in mesoscopic channel of amorphous NbGe. Thesis, Universitätsverlag Regensburg (2009)Google Scholar
- 49.Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Nonlocal versus local vortex dynamics in the transversal flux transformer effect. Phys. Rev. B 81 (17), 174521 (2010)Google Scholar
- 50.Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Reversal of nonlocal vortex motion in the regime of strong nonequilibrium. Phys. Rev. Lett. 104(2), 027005 (2010)Google Scholar
- 51.Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S., De Teresa, J.M.: Non local voltage in W-based nanowires grown by Focused Ion Beam Induced Deposition, manuscript in preparation Google Scholar
- 52.Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep.—Rev. Sect. Phys. Lett. 464(1–2), 1–70 (2008)Google Scholar
- 53.Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Symmetry-induced formation of antivortices in mesoscopic superconductors. Nature 408(6814), 833–835 (2000)ADSCrossRefGoogle Scholar
- 54.Grigorieva, I.V., Geim, A.K., Dubonos, S.V., Novoselov, K.S., Vodolazov, D.Y., Peeters, F.M., Kes, P.H., Hesselberth, M.: Long-range nonlocal flow of vortices in narrow superconducting channels. Phys. Rev. Lett. 92(23), 237001 (2004)Google Scholar
- 55.Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320(21), 2547–2562 (2008)CrossRefGoogle Scholar
- 56.Foley, C.P., Hilgenkamp, H.: Why NanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22(6), 064001 (2009)Google Scholar
- 57.Hao, L., Macfarlane, J.C., Gallop, J.C., Cox, D., Beyer, J., Drung, D., Schurig, T.: Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett. 92(19), 192507 (2008)Google Scholar
- 58.Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)ADSCrossRefGoogle Scholar
- 59.Gol’tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C., Sobolewski, R.: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)Google Scholar
- 60.Najafi, F., Marsili, F., Dauler, E., Molnar, R.J., Berggren, K.K.: Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100(15), 152602 (2012)Google Scholar
- 61.Sclafani, M., Marksteiner, M., Keir, F.M., Divochiy, A., Korneev, A., Semenov, A., Gol’tsman, G., Arndt, M.: Sensitivity of a superconducting nanowire detector for single ions at low energy. Nanotechnology 23(6), 065501 (2012)Google Scholar
- 62.Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006)CrossRefGoogle Scholar