Skip to main content

Ferromagnetic Iron Nanostructures Grown by Focused Electron Beam Induced Deposition

  • Chapter
  • First Online:
Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We performed a detailed study of the magnetotransport properties and the microstructure in iron microwires grown by focused electron beam induced deposition as a function of Fe content, which varies from 45 to 70 %. Magnetotransport mechanisms have been investigated in detail over a wide range of temperatures and applied magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Dorp, W.F., Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)

    Google Scholar 

  2. Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26(4), 1197–1276 (2008)

    Article  Google Scholar 

  3. Takeguchi, M., Shimojo, M., Furuya, K.: Fabrication of magnetic nanostructures using electron beam induced chemical vapour deposition. Nanotechnology 16(8), 1321–1325 (2005)

    Article  ADS  Google Scholar 

  4. Takeguchi, M., Shimojo, M., Furuya, K.: Nanostructure fabrication by electron-beam-induced deposition with metal carbonyl precursor and water vapor. Jpn. J. Appl. Phys., Part 1—Regul. Pap. Brief Commun. Rev. Pap. 46(9B), 6183–6186, (2007)

    Google Scholar 

  5. Zhang, W., Shimojo, M., Takeguchi, M., Che, R-c, Furuya, K.: Generation mechanism and in situ growth behavior of alpha-iron nanocrystals by electron beam induced deposition. Adv. Eng. Mater. 8(8), 711–714 (2006)

    Article  Google Scholar 

  6. Takeguchi, M., Shimojo, M., Mitsuishi, K., Tanaka, M., Che, R., Furuya, K.: Fabrication of nanostructures with different iron concentration by electron beam induced deposition with a mixture gas of iron carbonyl and ferrocene, and their magnetic properties. J. Mater. Sci. 41(14), 4532–4536 (2006)

    Article  ADS  Google Scholar 

  7. Bruk, M.A., Zhikharev, E.N., Grigor’ev, E.I., Spirin, A.V., Kal’nov, V.A., Kardash, I.E.: Focused electron beam-induced deposition of iron- and carbon-containing nanostructures from triiron dodecacarbonyl vapor. High Energy Chem. 39(2), 65–68 (2005)

    Article  Google Scholar 

  8. Kunz, R.R., Mayer, T.M.: Catalytic growth-rate enhancement of electron-beam deposited iron films. Appl. Phys. Lett. 50(15), 962–964 (1987)

    Article  ADS  Google Scholar 

  9. Shimojo, M., Takeguchi, M., Mitsuishi, K., Tanaka, M., Furuya, K.: Fabrication of iron oxide nanostructures by electron beam-induced deposition. 6th Pac. Rim Int. Conf. Adv. Mater. Process. (PRICM-6), Mater. Sci. Forum 561–565(1–3), 1101–1104 (2007)

    Google Scholar 

  10. Hochleitner, G., Wanzenboeck, H.D., Bertagnolli, E.: Electron beam induced deposition of iron nanostructures. J. Vac. Sci. Technol., B 26(3), 939–944 (2008)

    Article  Google Scholar 

  11. Lukasczyk, T., Schirmer, M., Steinruck, H.P., Marbach, H.: Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6), 841–846 (2008)

    Article  Google Scholar 

  12. Lukasczyk, T., Schirmer, M., Steinrueck, H.-P., Marbach, H.: Generation of clean iron structures by electron-beam-induced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir 25(19), 11930–11939 (2009)

    Article  Google Scholar 

  13. Walz, M–.M., Schirmer, M., Vollnhals, F., Lukasczyk, T., Steinrueck, H.-P., Marbach, H.: Electrons as “invisible ink”: fabrication of nanostructures by local electron beam induced activation of SiO x . Angew. Chem. Int. Ed. 49(27), 4669–4673 (2010)

    Article  Google Scholar 

  14. Walz, M–.M., Vollnhals, F., Schirmer, M., Steinrueck, H.-P., Marbach, H.: Generation of clean iron nanocrystals on an ultra-thin SiO x film on Si(001). Phys. Chem. Chem. Phys. 13(38), 17333–17338 (2011)

    Article  Google Scholar 

  15. Porrati, F., Sachser, R., Walz, M.M., Vollnhals, F., Steinrueck, H.P., Marbach, H., Huth, M.: Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J. Phys. D—Appl. Phys. 44(42), 425001 (2011)

    Google Scholar 

  16. Lavrijsen, R., Córdoba, R., Schoenaker, F.J., Ellis, T.H., Barcones, B., Kohlhepp, J.T., Swagten, H.J.M., Koopmans, B., De Teresa, J.M., Magén, C., Ibarra, M.R., Trompenaars, P., Mulders, J.J.L.: Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22(2), 025302 (2011). doi:10.1088/0957-4484/22/2/025302

    Google Scholar 

  17. Utke, I., Bret, T., Laub, D., Buffat, P., Scandella, L., Hoffmann, P.: Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553–558 (2004)

    Article  Google Scholar 

  18. Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M.R.: Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D: Appl Phys. 42(5), 055005 (2009)

    Google Scholar 

  19. Botman, A., Mulders, J.J.L., Hagen, C.W.: Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)

    Google Scholar 

  20. Bernau, L., Gabureac, M., Erni, R., Utke, I.: Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49(47), 8880–8884 (2010)

    Article  Google Scholar 

  21. Shimojo, M., Takeguchi, M., Mitsuishi, K., Tanaka, M., Furuya, K.: Mechanisms of crystalline iron oxide formation in electron beam-induced deposition. Jpn. J. Appl. Phys. Part 1—Reg. Pap. Brief Commun. Rev. Pap. 46(9B), 6247–6249 (2007)

    Google Scholar 

  22. Córdoba, R., Lavrijsen, R., Fernández-Pacheco, A., Ibarra, M.R., Schoenaker, F., Ellis, T., Barcones-Campo, B., Kohlhepp, J.T., Swagten, H.J.M., Koopmans, B., Mulders, J.J.L., De Teresa, J.M.: Giant anomalous hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition. J. Phys. D—Appl. Phys. 45(3), 035001 (2012). doi:10.1088/0022-3727/45/3/035001

    Google Scholar 

  23. Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M.R.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79(17), 174204 (2009)

    Google Scholar 

  24. Fernández-Pacheco, A., De Teresa, J.M., Orna, J., Morellón, L., Algarabel, P.A., Pardo, J.A., Ibarra, M.R.: Universal scaling of the anomalous Hall effect in Fe3O4 epitaxial thin films. Phys. Rev. B 77(10), 100403 (2008)

    Google Scholar 

  25. Mei, Y., Zhou, Z.J., Luo, H.L.: Electrical-resistivity of rf-sputtered iron-oxide thin-films. J. Appl. Phys. 61(8), 4388–4389 (1987)

    Article  ADS  Google Scholar 

  26. McGuire, T.R., Potter, R.I.: Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11(4), 1018–1038 (1975)

    Article  ADS  Google Scholar 

  27. Leven, B., Dumpich, G.: Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys. Rev. B 71(6), 064411 (2005)

    Google Scholar 

  28. Stankiewicz, J., Jimenez-Villacorta, F., Prieto, C.: Magnetotransport properties of oxidized iron thin films. Phys. Rev. B 73(1), 014429 (2006)

    Google Scholar 

  29. García-García, A., Vovk, A., Pardo, J.A., Strichovanec, P., Algarabel, P.A., Magén, C., De Teresa, J.M., Morellón, L., Ibarra, M.R.: Tunneling magnetoresistance in Fe/MgO granular multilayers. J. Appl. Phys. 107(3), 033704 (2010)

    Google Scholar 

  30. Serrate, D., De Teresa, J.M., Algarabel, P.A., Ibarra, M.R., Galibert, J.: Intergrain magnetoresistance up to 50 T in the half-metallic (Ba0.8Sr0.2)2FeMoO6 double perovskite: Spin-glass behavior of the grain boundary. Phys. Rev. B 71(10), 104409 (2005)

    Google Scholar 

  31. Ziese, M.: Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 65(2), 143–249 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  32. Mott, N.F.: Metal-insulator transition. Rev. Mod. Phys. 40(4), 677 (1968)

    Article  ADS  Google Scholar 

  33. Aharoni, A.: Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83(6), 3432–3434 (1998)

    Article  ADS  Google Scholar 

  34. Sangiao, S., Morellon, L., Simon, G., Teresa, J.M.D., Pardo, J.A., Arbiol, J., Ibarra, M.R.: Anomalous Hall effect in Fe (001) epitaxial thin films over a wide range in conductivity. Phys. Rev. B (Condens. Matter Mater. Phys.) 79(1), 014431 (2009)

    Google Scholar 

  35. Gerber, A., Milner, A., Finkler, A., Karpovski, M., Goldsmith, L., Tuaillon-Combes, J., Boisron, O., Melinon, P., Perez, A.: Correlation between the extraordinary Hall effect and resistivity. Phys. Rev. B 69(22), 224403 (2004)

    Google Scholar 

  36. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)

    Article  ADS  Google Scholar 

  37. Smit, J.: The spontaneous Hall effect in ferromagnetics.1. Physica 21(11), 877–887 (1955)

    Article  ADS  Google Scholar 

  38. Smit, J.: The spontaneous Hall effect in ferromagnetics-II. Physica 24(1), 39–51 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  39. García-García, A., Vovk, A., Pardo, J.A., Strichovanec, P., Magén, C., Snoeck, E., Algarabel, P.A., De Teresa, J.M., Morellón, L., Ibarra, M.R.: Magnetic properties of Fe/MgO granular multilayers prepared by pulsed laser deposition. J. Appl. Phys. 105(6), 063–909 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Córdoba Castillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Córdoba Castillo, R. (2014). Ferromagnetic Iron Nanostructures Grown by Focused Electron Beam Induced Deposition. In: Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02081-5_4

Download citation

Publish with us

Policies and ethics