Ferromagnetic Cobalt Nanostructures Grown by Focused Electron Beam Induced Deposition

  • Rosa Córdoba CastilloEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we present the fabrication and characterization of Co nanodeposits, showing that varying the growth parameters such as the electron current, the beam accelerating voltage, the precursor flow, and the substrate temperature has significant impact on subsequent magnetic properties. Compositional analysis of these nanodeposits was done in situ.


Cobalt Content Precursor Material Physical Property Measurement System Electron Beam Current Metallic Cobalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lin, T., Tsang, C., Fontana, R.E., Howard, J.K.: Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors. IEEE Trans. Magn. 31(6), 2585–2590 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Chappert, C., Fert, A., Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Martins, V.C., Germano, J., Cardoso, F.A., Loureiro, J., Cardoso, S., Sousa, L., Piedade, M., Fonseca, L.P., Freitas, P.P.: Challenges and trends in the development of a magnetoresistive biochip portable platform. J. Magn. Magn. Mater. 322(9–12), 1655–1663 (2008)ADSGoogle Scholar
  5. 5.
    Utke, I., Hoffmann, P., Berger, R., Scandella, L.: High-resolution magnetic Co supertips grown by a focused electron beam. Appl. Phys. Lett. 80(25), 4792–4794 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Utke, I., Bret, T., Laub, D., Buffat, P., Scandella, L., Hoffmann, P.: Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553–558 (2004)CrossRefGoogle Scholar
  7. 7.
    Utke, I., Michler, J., Gasser, P., Santschi, C., Laub, D., Cantoni, M., Buffat, P.A., Jiao, C., Hoffmann, P.: Cross section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition. Adv. Eng. Mater. 7(5), 323–331 (2005)CrossRefGoogle Scholar
  8. 8.
    Lau, Y.M.; Chee, P.C.; Thong, J.T.L.; Ng, V.: Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J. Vac. Sci. Technol. A—Vac. Surf. Films 20(4), 1295–1302 (2002)Google Scholar
  9. 9.
    Fernández-Pacheco, A., De Teresa, J.M., Szkudlarek, A., Córdoba, R., Ibarra, M.R., Petit, D., O’Brien, L., Lewis, E.R., Read, D.E., Zeng, H.T., Cowburn, R.P.: Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20, 475704 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Botman, A.; Mulders, J.J.L.; Hagen, C.W., Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)Google Scholar
  11. 11.
    Gazzadi, G.C., Mulders, J.J.L., Trompenaars, P., Ghirri, A., Rota, A., Affronte, M., Frabboni, S.: Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88(8), 1955–1958 (2011)CrossRefGoogle Scholar
  12. 12.
    Gazzadi, G.C., Mulders, H., Trompenaars, P., Ghirri, A., Affronte, M., Grillo, V., Frabboni, S.: Focused electron beam deposition of nanowires from cobalt tricarbonyl nitrosyl (Co(CO)(3)NO) precursor. J. Phys. Chem. C 115(40), 19606–19611 (2011)CrossRefGoogle Scholar
  13. 13.
    Fernández-Pacheco, A.; De Teresa, J.M.; Córdoba, R.; Ibarra, M.R.: Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D: Appl. Phys. 42(5), 055005 (2009)Google Scholar
  14. 14.
    Jeanguillaume, C., Colliex, C.: Spectrum-image—the next step in EELS digital acquisition and processing. Ultramicroscopy 28(1–4), 252–257 (1989)CrossRefGoogle Scholar
  15. 15.
    Gloter, A.: Private communicationGoogle Scholar
  16. 16.
    Trebbia, P., Bonnet, N.: EELS elemental mapping with unconventional methods. 1. Theoretical basis—image-analysis with multivariate-statistics and entropy concepts. Ultramicroscopy 34(3), 165–178 (1990)CrossRefGoogle Scholar
  17. 17.
    Córdoba, R., Fernández-Pacheco, R., Fernández-Pacheco, A., Gloter, A., Magén, C., Stephan, O., Ibarra, M.R., De Teresa, J.M.: Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6, 1–6 (2011). doi: 10.1186/1556-276X-6-592 CrossRefGoogle Scholar
  18. 18.
    Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P., Hofer, F.: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96(3–4), 469–480 (2003)CrossRefGoogle Scholar
  19. 19.
    Golla-Schindler, U., Benner, G., Putnis, A.: Laterally resolved EELS for ELNES mapping of the Fe L-2, L-3- and OK-edge. Ultramicroscopy 96(3–4), 573–582 (2003)CrossRefGoogle Scholar
  20. 20.
    Fernández-Pacheco, A.; De Teresa, J.M.; Córdoba, R.; Ibarra, M.R.; Petit, D.; Read, D.E.; O’Brien, L.; Lewis, E.R.; Zeng, H.T.; Cowburn, R.P.: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl. Phys. Lett. 94(19), 192509 (2009)Google Scholar
  21. 21.
    Utke, I., Golzhauser, A.: Small, minimally invasive, direct: Electrons induce local reactions of adsorbed functional molecules on the nanoscale. Angew. Chem. Int. Ed. 49(49), 9328–9330 (2010)CrossRefGoogle Scholar
  22. 22.
    Bernau, L., Gabureac, M., Erni, R., Utke, I.: Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49(47), 8880–8884 (2010)CrossRefGoogle Scholar
  23. 23.
    De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. J. Nanomaterials 2009, 936863 (2009)CrossRefGoogle Scholar
  24. 24.
    Boero, G.; Utke, I.; Bret, T.; Quack, N.; Todorova, M.; Mouaziz, S.; Kejik, P.; Brugger, J.; Popovic, R.S.; Hoffmann, P.: Submicrometer hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86(4), 042503 (2005)Google Scholar
  25. 25.
    Gabureac, M.; Bernau, L.; Utke, I.; Boero, G.: Granular Co-C nano-hall sensors by focused-beam-induced deposition. Nanotechnology 21(11), 115503 (2010)Google Scholar
  26. 26.
    Belova, L.M.; Dahlberg, E.D.; Riazanova, A.; Mulders, J.J. L.; Christophersen, C.; Eckert, J.: Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22(14), 145305 (2011)Google Scholar
  27. 27.
    Mulders, J.J.L.; Belova, L.M.; Riazanova, A.: Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22(5), 055302 (2011)Google Scholar
  28. 28.
    Molhave, K., Madsen, D.N., Rasmussen, A.M., Carlsson, A., Appel, C.C., Brorson, M., Jacobsen, C.J.H., Boggild, P.: Solid gold nanostructures fabricated by electron beam deposition. Nano Lett. 3(11), 1499–1503 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87(5–8), 1550–1553 (2010). doi: 10.1016/j.mee.2009.11.027 CrossRefGoogle Scholar
  30. 30.
    Kunz, R.R., Mayer, T.M.: Catalytic growth-rate enhancement of electron-beam deposited iron films. Appl. Phys. Lett. 50(15), 962–964 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    Ye, D.X., Pimanpang, S., Jezewski, C., Tang, F., Senkevich, J.J., Wang, G.C., Lu, T.M.: Low temperature chemical vapor deposition of Co thin films from Co2(CO)8. Thin Solid Films 485(1–2), 95–100 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    van Dorp, W.F.; Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)Google Scholar
  33. 33.
    Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R.: CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007)CrossRefGoogle Scholar
  34. 34.
    Liao, Z.M.; Xu, J.; Zhang, X.Z.; Yu, D.P.: The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 19(30), 305402 (2008)Google Scholar
  35. 35.
    Lukasczyk, T., Schirmer, M., Steinruck, H.P., Marbach, H.: Electron-beam-induced deposition in ultrahigh vacuum: Lithographic fabrication of clean iron nanostructures. Small 4(6), 841–846 (2008)CrossRefGoogle Scholar
  36. 36.
    Lukasczyk, T., Schirmer, M., Steinrueck, H.-P., Marbach, H.: Generation of clean iron structures by electron-beam-induced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir 25(19), 11930–11939 (2009)CrossRefGoogle Scholar
  37. 37.
    Walz, M.-M., Schirmer, M., Vollnhals, F., Lukasczyk, T., Steinrueck, H.-P., Marbach, H.: Electrons as “Invisible Ink”: fabrication of nanostructures by local electron beam induced activation of SiOx. Angew. Chem. Int. Ed. 49(27), 4669–4673 (2010)CrossRefGoogle Scholar
  38. 38.
    Hirose, F.; Sakamoto, H.: Low-temperature Si selective epitaxial growth using electron-beam-induced reaction. Jpn. J. Appl. Phys. Part 1—Regul. Pap., Short Notes Rev. Pap. 34(11), 5904–5907 (1995)Google Scholar
  39. 39.
    Matsui, S., Ichihashi, T., Mito, M.: Electron-beam induced selective etching and deposition technology. J. Vac. Sci. Technol., B 7(5), 1182–1190 (1989)CrossRefGoogle Scholar
  40. 40.
    Córdoba, R., Sesé, J., Ibarra, M.R., De Teresa, J.M.: Autocatalytic growth of Co on pure Co surfaces using Co2(CO)8 precursor. Appl. Surf. Sci. 263, 242–246 (2012). doi: 10.1016/j.apsusc.2012.09.037 ADSCrossRefGoogle Scholar
  41. 41.
    Serrano-Ramón, L., Córdoba, R., Rodriguez, L.A., Magén, C., Snoeck, E., Gatel, C., Serrano, I., Ibarra, M.R., De Teresa, J.M.: Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10), 7781–7787 (2011). doi: 10.1021/nn201517r CrossRefGoogle Scholar
  42. 42.
    Beaulieu, D., Ding, Y., Wang, Z.L., Lackey, W.J.: Influence of process variables on electron beam chemical vapor deposition of platinum. J. Vac. Sci. Technol., B 23(5), 2151–2159 (2005)CrossRefGoogle Scholar
  43. 43.
    Kohlmann, K.T., Buchmann, L.M., Brunger, W.H.: Repair of open stencil masks for ion projection lithography by e-beam induced metal-deposition. Microelectron. Eng. 17(1–4), 427–430 (1992)CrossRefGoogle Scholar
  44. 44.
    Kotzler, J.; Gil, W.: Anomalous hall resistivity of cobalt films: Evidence for the intrinsic spin-orbit effect. Phys. Rev. B 72(6), 060412 (2005)Google Scholar
  45. 45.
    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Kirk, K.J., Chapman, J.N., Wilkinson, C.D.W.: Lorentz microscopy of small magnetic structures (invited). J. Appl. Phys. 85(8), 5237–5242 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Tonomura, A.: Electron holography of magnetic-materials and observation of flux-line dynamics. Ultramicroscopy 47(4), 419–424 (1992)CrossRefGoogle Scholar
  48. 48.
    Moritz, J.; Rodmacq, B.; Auffret, S.; Dieny, B.: Extraordinary hall effect in thin magnetic films and its potential for sensors, memories and magnetic logic applications. J. Phys. D—Appl. Phys. 41(13), 135001 (2008)Google Scholar
  49. 49.
    Sandhu, A.; Sanbonsugi, H.; Shibasaki, I.; Abe, M.; Handa, H.: High sensitivity InSb ultra-thin film micro-hall sensors for bioscreening applications. Jpn. J. Appl. Phys. Part 2—Lett. Expr. Lett. 43(7A), L868–L870 (2004)Google Scholar
  50. 50.
    van Kouwen, L., Botman, A., Hagen, C.W.: Focused electron-beam-induced deposition of 3 nm dots in as Scanning electron microscope. Nano Lett. 9(5), 2149–2152 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Serrano-Ramón, L.E.: Thesis, Universidad de Zaragoza (in progress)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratorio de Microscopías Avanzadas-Instituto de Nanociencia de Aragón; Department of Condensed Matter PhysicsUniversidad de ZaragozaZaragozaSpain

Personalised recommendations