Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition pp 45-70 | Cite as
Ferromagnetic Cobalt Nanostructures Grown by Focused Electron Beam Induced Deposition
Chapter
First Online:
- 611 Downloads
Abstract
In this chapter we present the fabrication and characterization of Co nanodeposits, showing that varying the growth parameters such as the electron current, the beam accelerating voltage, the precursor flow, and the substrate temperature has significant impact on subsequent magnetic properties. Compositional analysis of these nanodeposits was done in situ.
Keywords
Cobalt Content Precursor Material Physical Property Measurement System Electron Beam Current Metallic Cobalt
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Lin, T., Tsang, C., Fontana, R.E., Howard, J.K.: Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors. IEEE Trans. Magn. 31(6), 2585–2590 (1995)ADSCrossRefGoogle Scholar
- 2.Chappert, C., Fert, A., Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007)ADSCrossRefGoogle Scholar
- 3.Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)ADSCrossRefGoogle Scholar
- 4.Martins, V.C., Germano, J., Cardoso, F.A., Loureiro, J., Cardoso, S., Sousa, L., Piedade, M., Fonseca, L.P., Freitas, P.P.: Challenges and trends in the development of a magnetoresistive biochip portable platform. J. Magn. Magn. Mater. 322(9–12), 1655–1663 (2008)ADSGoogle Scholar
- 5.Utke, I., Hoffmann, P., Berger, R., Scandella, L.: High-resolution magnetic Co supertips grown by a focused electron beam. Appl. Phys. Lett. 80(25), 4792–4794 (2002)ADSCrossRefGoogle Scholar
- 6.Utke, I., Bret, T., Laub, D., Buffat, P., Scandella, L., Hoffmann, P.: Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553–558 (2004)CrossRefGoogle Scholar
- 7.Utke, I., Michler, J., Gasser, P., Santschi, C., Laub, D., Cantoni, M., Buffat, P.A., Jiao, C., Hoffmann, P.: Cross section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition. Adv. Eng. Mater. 7(5), 323–331 (2005)CrossRefGoogle Scholar
- 8.Lau, Y.M.; Chee, P.C.; Thong, J.T.L.; Ng, V.: Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J. Vac. Sci. Technol. A—Vac. Surf. Films 20(4), 1295–1302 (2002)Google Scholar
- 9.Fernández-Pacheco, A., De Teresa, J.M., Szkudlarek, A., Córdoba, R., Ibarra, M.R., Petit, D., O’Brien, L., Lewis, E.R., Read, D.E., Zeng, H.T., Cowburn, R.P.: Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20, 475704 (2009)ADSCrossRefGoogle Scholar
- 10.Botman, A.; Mulders, J.J.L.; Hagen, C.W., Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)Google Scholar
- 11.Gazzadi, G.C., Mulders, J.J.L., Trompenaars, P., Ghirri, A., Rota, A., Affronte, M., Frabboni, S.: Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88(8), 1955–1958 (2011)CrossRefGoogle Scholar
- 12.Gazzadi, G.C., Mulders, H., Trompenaars, P., Ghirri, A., Affronte, M., Grillo, V., Frabboni, S.: Focused electron beam deposition of nanowires from cobalt tricarbonyl nitrosyl (Co(CO)(3)NO) precursor. J. Phys. Chem. C 115(40), 19606–19611 (2011)CrossRefGoogle Scholar
- 13.Fernández-Pacheco, A.; De Teresa, J.M.; Córdoba, R.; Ibarra, M.R.: Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D: Appl. Phys. 42(5), 055005 (2009)Google Scholar
- 14.Jeanguillaume, C., Colliex, C.: Spectrum-image—the next step in EELS digital acquisition and processing. Ultramicroscopy 28(1–4), 252–257 (1989)CrossRefGoogle Scholar
- 15.Gloter, A.: Private communicationGoogle Scholar
- 16.Trebbia, P., Bonnet, N.: EELS elemental mapping with unconventional methods. 1. Theoretical basis—image-analysis with multivariate-statistics and entropy concepts. Ultramicroscopy 34(3), 165–178 (1990)CrossRefGoogle Scholar
- 17.Córdoba, R., Fernández-Pacheco, R., Fernández-Pacheco, A., Gloter, A., Magén, C., Stephan, O., Ibarra, M.R., De Teresa, J.M.: Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6, 1–6 (2011). doi: 10.1186/1556-276X-6-592 CrossRefGoogle Scholar
- 18.Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P., Hofer, F.: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96(3–4), 469–480 (2003)CrossRefGoogle Scholar
- 19.Golla-Schindler, U., Benner, G., Putnis, A.: Laterally resolved EELS for ELNES mapping of the Fe L-2, L-3- and OK-edge. Ultramicroscopy 96(3–4), 573–582 (2003)CrossRefGoogle Scholar
- 20.Fernández-Pacheco, A.; De Teresa, J.M.; Córdoba, R.; Ibarra, M.R.; Petit, D.; Read, D.E.; O’Brien, L.; Lewis, E.R.; Zeng, H.T.; Cowburn, R.P.: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl. Phys. Lett. 94(19), 192509 (2009)Google Scholar
- 21.Utke, I., Golzhauser, A.: Small, minimally invasive, direct: Electrons induce local reactions of adsorbed functional molecules on the nanoscale. Angew. Chem. Int. Ed. 49(49), 9328–9330 (2010)CrossRefGoogle Scholar
- 22.Bernau, L., Gabureac, M., Erni, R., Utke, I.: Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49(47), 8880–8884 (2010)CrossRefGoogle Scholar
- 23.De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. J. Nanomaterials 2009, 936863 (2009)CrossRefGoogle Scholar
- 24.Boero, G.; Utke, I.; Bret, T.; Quack, N.; Todorova, M.; Mouaziz, S.; Kejik, P.; Brugger, J.; Popovic, R.S.; Hoffmann, P.: Submicrometer hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86(4), 042503 (2005)Google Scholar
- 25.Gabureac, M.; Bernau, L.; Utke, I.; Boero, G.: Granular Co-C nano-hall sensors by focused-beam-induced deposition. Nanotechnology 21(11), 115503 (2010)Google Scholar
- 26.Belova, L.M.; Dahlberg, E.D.; Riazanova, A.; Mulders, J.J. L.; Christophersen, C.; Eckert, J.: Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22(14), 145305 (2011)Google Scholar
- 27.Mulders, J.J.L.; Belova, L.M.; Riazanova, A.: Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22(5), 055302 (2011)Google Scholar
- 28.Molhave, K., Madsen, D.N., Rasmussen, A.M., Carlsson, A., Appel, C.C., Brorson, M., Jacobsen, C.J.H., Boggild, P.: Solid gold nanostructures fabricated by electron beam deposition. Nano Lett. 3(11), 1499–1503 (2003)ADSCrossRefGoogle Scholar
- 29.Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87(5–8), 1550–1553 (2010). doi: 10.1016/j.mee.2009.11.027 CrossRefGoogle Scholar
- 30.Kunz, R.R., Mayer, T.M.: Catalytic growth-rate enhancement of electron-beam deposited iron films. Appl. Phys. Lett. 50(15), 962–964 (1987)ADSCrossRefGoogle Scholar
- 31.Ye, D.X., Pimanpang, S., Jezewski, C., Tang, F., Senkevich, J.J., Wang, G.C., Lu, T.M.: Low temperature chemical vapor deposition of Co thin films from Co2(CO)8. Thin Solid Films 485(1–2), 95–100 (2005)ADSCrossRefGoogle Scholar
- 32.van Dorp, W.F.; Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)Google Scholar
- 33.Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R.: CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007)CrossRefGoogle Scholar
- 34.Liao, Z.M.; Xu, J.; Zhang, X.Z.; Yu, D.P.: The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 19(30), 305402 (2008)Google Scholar
- 35.Lukasczyk, T., Schirmer, M., Steinruck, H.P., Marbach, H.: Electron-beam-induced deposition in ultrahigh vacuum: Lithographic fabrication of clean iron nanostructures. Small 4(6), 841–846 (2008)CrossRefGoogle Scholar
- 36.Lukasczyk, T., Schirmer, M., Steinrueck, H.-P., Marbach, H.: Generation of clean iron structures by electron-beam-induced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir 25(19), 11930–11939 (2009)CrossRefGoogle Scholar
- 37.Walz, M.-M., Schirmer, M., Vollnhals, F., Lukasczyk, T., Steinrueck, H.-P., Marbach, H.: Electrons as “Invisible Ink”: fabrication of nanostructures by local electron beam induced activation of SiOx. Angew. Chem. Int. Ed. 49(27), 4669–4673 (2010)CrossRefGoogle Scholar
- 38.Hirose, F.; Sakamoto, H.: Low-temperature Si selective epitaxial growth using electron-beam-induced reaction. Jpn. J. Appl. Phys. Part 1—Regul. Pap., Short Notes Rev. Pap. 34(11), 5904–5907 (1995)Google Scholar
- 39.Matsui, S., Ichihashi, T., Mito, M.: Electron-beam induced selective etching and deposition technology. J. Vac. Sci. Technol., B 7(5), 1182–1190 (1989)CrossRefGoogle Scholar
- 40.Córdoba, R., Sesé, J., Ibarra, M.R., De Teresa, J.M.: Autocatalytic growth of Co on pure Co surfaces using Co2(CO)8 precursor. Appl. Surf. Sci. 263, 242–246 (2012). doi: 10.1016/j.apsusc.2012.09.037 ADSCrossRefGoogle Scholar
- 41.Serrano-Ramón, L., Córdoba, R., Rodriguez, L.A., Magén, C., Snoeck, E., Gatel, C., Serrano, I., Ibarra, M.R., De Teresa, J.M.: Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10), 7781–7787 (2011). doi: 10.1021/nn201517r CrossRefGoogle Scholar
- 42.Beaulieu, D., Ding, Y., Wang, Z.L., Lackey, W.J.: Influence of process variables on electron beam chemical vapor deposition of platinum. J. Vac. Sci. Technol., B 23(5), 2151–2159 (2005)CrossRefGoogle Scholar
- 43.Kohlmann, K.T., Buchmann, L.M., Brunger, W.H.: Repair of open stencil masks for ion projection lithography by e-beam induced metal-deposition. Microelectron. Eng. 17(1–4), 427–430 (1992)CrossRefGoogle Scholar
- 44.Kotzler, J.; Gil, W.: Anomalous hall resistivity of cobalt films: Evidence for the intrinsic spin-orbit effect. Phys. Rev. B 72(6), 060412 (2005)Google Scholar
- 45.Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)ADSCrossRefGoogle Scholar
- 46.Kirk, K.J., Chapman, J.N., Wilkinson, C.D.W.: Lorentz microscopy of small magnetic structures (invited). J. Appl. Phys. 85(8), 5237–5242 (1999)ADSCrossRefGoogle Scholar
- 47.Tonomura, A.: Electron holography of magnetic-materials and observation of flux-line dynamics. Ultramicroscopy 47(4), 419–424 (1992)CrossRefGoogle Scholar
- 48.Moritz, J.; Rodmacq, B.; Auffret, S.; Dieny, B.: Extraordinary hall effect in thin magnetic films and its potential for sensors, memories and magnetic logic applications. J. Phys. D—Appl. Phys. 41(13), 135001 (2008)Google Scholar
- 49.Sandhu, A.; Sanbonsugi, H.; Shibasaki, I.; Abe, M.; Handa, H.: High sensitivity InSb ultra-thin film micro-hall sensors for bioscreening applications. Jpn. J. Appl. Phys. Part 2—Lett. Expr. Lett. 43(7A), L868–L870 (2004)Google Scholar
- 50.van Kouwen, L., Botman, A., Hagen, C.W.: Focused electron-beam-induced deposition of 3 nm dots in as Scanning electron microscope. Nano Lett. 9(5), 2149–2152 (2009)ADSCrossRefGoogle Scholar
- 51.Serrano-Ramón, L.E.: Thesis, Universidad de Zaragoza (in progress)Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014