Advertisement

Experimental Techniques

  • Rosa Córdoba CastilloEmail author
Chapter
  • 623 Downloads
Part of the Springer Theses book series (Springer Theses)

In this chapter we present the experimental techniques used in the development of this thesis, for the fabrication of samples and for subsequent characterization. The sample fabrication was carried out in three “Dual Beam” (SEM/FIB) systems with similar characteristics: Nova 200 NanoLab and Helios NanoLab 600 stationed in the Advanced Microscopy Laboratory, Institute of Nanoscience of Aragon (INA-LMA), University of Zaragoza, and the Nova 600 NanoLab installed at the Eindhoven University of Technology (TU/e). The characterization of the samples was performed in situ (SEM, EDS, electrical transport measurements) and ex situ (AFM, PPMS, HRTEM, STEM/EELS,…) in the Advanced Microscopy Laboratory, Institute of Nanoscience of Aragon (LMA-INA) and the Physical Measurements Service of the University of Zaragoza.

Nanolithography by “Dual Beam”

Description of a “Dual Beam”

In Chap. 1 we provided an overview of a Dual Beamsystem, detailing the fundamental parts that make it up and its wide...

Keywords

Electron Energy Loss Spectroscopy Spherical Aberration Precursor Material Physical Property Measurement System Lamella Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Friedli, V., Utke, I.: Optimized molecule supply from nozzle-based gas injection systems for focused electron- and ion-beam induced deposition and etching: simulation and experiment. J. Phys. D. Appl. Phys. 42(12), 125305 (2009)Google Scholar
  3. 3.
    Castaing, R., Descamps, J.: Sur les bases physiques de l’analyse ponctuelle par spectrographie-X. J.phys. et le Radium. 16(4), 304–317 (1955)CrossRefGoogle Scholar
  4. 4.
    Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R.: CASINO V2.42–A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007)CrossRefGoogle Scholar
  5. 5.
    Giannuzzi, L.A., Stevie, F.A.: Introduction to focused ion beams, p. 357. Springer Science, Boston (2005)CrossRefGoogle Scholar
  6. 6.
    Langford, R.M., Rogers, M.: In situ lift-out: Steps to improve yield and a comparison with other FIB TEM sample preparation techniques. Micron 39(8), 1325–1330 (2008)CrossRefGoogle Scholar
  7. 7.
    Mayer, J., Giannuzzi, L.A., Kamino, T., Michael, J.: TEM sample preparation and FIB-induced damage. MRS Bull. 32(5), 400–407 (2007)CrossRefGoogle Scholar
  8. 8.
    Young, R.J., Kirk, E.C.G., Williams, D. A., Ahmed, H.: Fabrication of planar and cross-sectional TEM specimens using a focused ion-beam, vol. 199, pp. 205–216. Materials Research Society, Pittsburgh (1990)Google Scholar
  9. 9.
    De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. Journal of Nanomaterials 2009, 936863 (2009)CrossRefGoogle Scholar
  10. 10.
    Sangiao, S., Morellon, L., Simon, G., Teresa, J.M.D., Pardo, J.A., Arbiol, J., Ibarra, M.R.: Anomalous hall effect in Fe (001) epitaxial thin films over a wide range in conductivity. Phys. Rev. B (Condensed Matter Mater. Phys.) 79(1), 014431 (2009)Google Scholar
  11. 11.
    Estradè, S., Rebled, J.M., Arbiol, J., Peiró, F., Infante, I.C., Herranz, G., Sanchez, F., Fontcuberta, J., Córdoba, R., Mendis, B.G., Bleloch, A.L.: Effects of thickness on the cation segregation in epitaxial (001) and (110) La2/3Ca1/3MnO3 thin films. Appl. Phys. Lett. 95(7), 072507 (2009)Google Scholar
  12. 12.
    Marcano, N., Sangiao, S., Magen, C., Morellon, L., Ibarra, M.R., Plaza, M., Perez, L., De Teresa, J.M.: Role of the surface states in the magnetotransport properties of ultrathin bismuth films. Phys. Rev. B 82(12), 125326 (2010)Google Scholar
  13. 13.
    Estradè, S., Rebled, J.M., Walls, M.G., de la Pena, F., Colliex, C., Córdoba, R., Infante, I.C., Herranz, G., Sanchez, F., Fontcuberta, J., Peiro, F.: Effect of the capping on the local Mn oxidation state in buried (001) and (110) SrTiO3/La2/3Ca1/3MnO3 interfaces. J. Appl. Phys. 110(10), 103903 (2011)Google Scholar
  14. 14.
    Lavrijsen, R., Córdoba, R., Schoenaker, F.J., Ellis, T.H., Barcones, B., Kohlhepp, J.T., Swagten, H. J.M., Koopmans, B., De Teresa, J.M., Magén, C., Ibarra, M.R., Trompenaars, P., Mulders, J.J.L.: Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology. 22(2), 025302 (2011)Google Scholar
  15. 15.
    Córdoba, R., Fernández-Pacheco, R., Fernández-Pacheco, A., Gloter, A., Magén, C., Stephan, O., Ibarra, M.R., De Teresa, J.M.: Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6, 1–6 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratorio de Microscopías Avanzadas-Instituto de Nanociencia de Aragón; Department of Condensed Matter PhysicsUniversidad de ZaragozaZaragozaSpain

Personalised recommendations