Advertisement

Introduction

  • Rosa Córdoba CastilloEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter we will describe the concepts of nanotechnology and nanoelectronics, then we will go on to the general fundamentals of the fabrication of nanostructures by FEBID and FIBID techniques with potential applications in superconductivity and spintronics. This is the general framework within which this thesis is classified, which is devoted largely to the fabrication and characterization of nanostructures that exhibit ferromagnetic or superconducting properties.

Keywords

High Resolution Transmission Electron Microscopy Lorentz Force Precursor Molecule Vortex Motion Physical Property Measurement System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)Google Scholar
  2. 2.
    Spaldin, N.: In: Magnetic Materials Fundamentals and Device Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  3. 3.
    Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Novoselov, K.S.: Nobel lecture: graphene: materials in the Flatland. Rev. Mod. Phys. 83(3), 837–849 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    van Kouwen, L., Botman, A., Hagen, C.W.: Focused electron-beam-induced deposition of 3 nm dots in a scanning electron microscope. Nano Lett. 9(5), 2149–2152 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Jonckheere, R., Bret, T., Van den Heuvel, D., Magana, J., Gao, W., Waiblinger, M.: Repair of natural EUV reticle defects. In: Maurer, W., Abboud, F.E., (eds.) Photomask Technology 2011, vol. 8166. SPIE—The International Society of Optical Engineering, Bellingham (2011)Google Scholar
  10. 10.
    Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams, p. 357. Springer Science, Boston (2005)CrossRefGoogle Scholar
  11. 11.
    Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11(4), 287–300 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Drouin, D.: Programa de simulación, CASINO (1996)Google Scholar
  13. 13.
    Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R.: CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007)CrossRefGoogle Scholar
  14. 14.
    Gomer, R.: Mechanims of liquid-metal electron and ion sources. Appl. Phys. 19(4), 365–375 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    Ziegler, J.F.: Nuclear instruments & methods in physics research section B-Beam interactions with materials and atoms. 219, 1027 (2004)Google Scholar
  16. 16.
    Rius, G., Llobet, J., Arcamone, J., Borrise, X., Perez-Murano, F.: Electron- and ion-beam lithography for the fabrication of nanomechanical devices integrated on CMOS circuits. Microelectron. Eng. 86(4–6), 1046–1049 (2009)CrossRefGoogle Scholar
  17. 17.
    Rius, G., Llobet, J., Borrise, X., Mestres, N., Retolaza, A., Merino, S., Perez-Murano, F.: Fabrication of complementary metal-oxide-semiconductor integrated nanomechanical devices by ion beam patterning. J. Vac. Sci. Technol., B 27(6), 2691–2697 (2009)CrossRefGoogle Scholar
  18. 18.
    Melngailis, J., Mondelli, A.A., Berry, I.L., Mohondro, R.: A review of ion projection lithography. J. Vac. Sci. Technol., B 16(3), 927–957 (1998)CrossRefGoogle Scholar
  19. 19.
    Tseng, A.A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14(4), R15–R34 (2004)CrossRefGoogle Scholar
  20. 20.
    Tseng, A.A.: Recent developments in nanofabrication using focused ion beams. Small 1(10), 924–939 (2005)CrossRefGoogle Scholar
  21. 21.
    Miller, M.K., Russell, K.F.: Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107(9), 761–766 (2007)CrossRefGoogle Scholar
  22. 22.
    Miller, M.K., Russell, K.F., Thompson, G.B.: Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102(4), 287–298 (2005)CrossRefGoogle Scholar
  23. 23.
    Randolph, S.J., Fowlkes, J.D., Rack, P.D.: Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31(3), 55–89 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Martínez-Pérez, M.J., Sesé, J., Córdoba, R., Luis, F., Drung, D., Schuring, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Technol. 22(12), 125020 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Randolph, S.J., Fowlkes, J.D., Rack, P.D.: Focused electron-beam-induced etching of silicon dioxide. J. Appl. Phys. 98(3), 034902 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Yemini, M., Hadad, B., Liebes, Y., Goldner, A., Ashkenasy, N.: The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology 20(24), 245302 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Bret, T., Afra, B., Becker, R., Hofmann, T., Edinger, K., Liang, T., Hoffmann, P.: Gas assisted focused electron beam induced etching of alumina. J. Vac. Sci. Technol., B 27(6), 2727–2731 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, J.H., Griffis, D.P., Garcia, R., Russell, P.E.: Etching characteristics of chromium thin films by an electron beam induced surface reaction. Semicond. Sci. Technol. 18(4), 199–205 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, S., Sun, Y.M., White, J.M., Stivers, A., Liang, T.: Electron-beam-assisted etching of CrOx films by Cl2. J. Vac. Sci. Technol., B 23(1), 206–209 (2005)CrossRefGoogle Scholar
  30. 30.
    Ganczarczyk, A., Geller, M., Lorke, A.: XeF2 gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution. Nanotechnology 22(4), 045301 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Lassiter, M.G., Liang, T., Rack, P.D.: Inhibiting spontaneous etching of nanoscale electron beam induced etching features: solutions for nanoscale repair of extreme ultraviolet lithography masks. J. Vac. Sci. Technol., B 26(3), 963–967 (2008)CrossRefGoogle Scholar
  32. 32.
    Roediger, P., Wanzenboeck, H.D., Hochleitner, G., Bertagnolli, E.: Crystallinity-retaining removal of germanium by direct-write focused electron beam induced etching. J. Vac. Sci. Technol., B, 29(4), 041801 (2011)Google Scholar
  33. 33.
    Schoenaker, F.J., Córdoba, R., Fernández-Pacheco, R., Magén, C., Stephan, O., Zuriaga-Monroy, C., Ibarra, M.R., De Teresa, J.M.: Focused electron beam induced etching of titanium with XeF2. Nanotechnology 22(26), 265304 (2011). doi: 10.1088/0957-4484/22/26/265304 ADSCrossRefGoogle Scholar
  34. 34.
    Santschi, C., Jenke, M., Hoffmann, P., Brugger, J.: Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17(11), 2722–2729 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Matsui, S., Mori, K.: New selective deposition technology by electron-beam induced surface-reaction. Jpn. J. Appl. Phys. Part 2-Lett. 23(9), L706–L708 (1984)Google Scholar
  36. 36.
    Matsui, S., Mori, K.: New selective deposition technology by electron-beam induced surface-reaction. J. Vac. Sci. Technol., B 4(1), 299–304 (1986)CrossRefGoogle Scholar
  37. 37.
    Koops, H.W.P., Weiel, R., Kern, D.P., Baum, T.H.: High-resolution electron-beam induced deposition. J. Vac. Sci. Technol., B 6(1), 477–481 (1988)CrossRefGoogle Scholar
  38. 38.
    Silvis-Cividjian, N., Hagen, C.W.: Electron-beam-induced nanometer-scale deposition. In: Advances in Imaging and Electron Physics, vol 143. Elsevier Academic Press Inc: San Diego (2006)Google Scholar
  39. 39.
    van Dorp, W.F., Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol., B 26(4), 1197–1276 (2008)CrossRefGoogle Scholar
  41. 41.
    Wnuk, J.D., Gorham, J.M., Rosenberg, S.G., van Dorp, W.F., Madey, T.E., Hagen, C.W., Fairbrother, D.H.: Electron induced surface reactions of the organometallic precursor trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem., C 113(6), 2487–2496 (2009)CrossRefGoogle Scholar
  42. 42.
    Fowlkes, J.D., Rack, P.D.: Fundamental electron-precursor-solid interactions derived from time-dependent electron-beam-induced deposition simulations and experiments. ACS Nano 4(3), 1619–1629 (2010)CrossRefGoogle Scholar
  43. 43.
    Silvis-Cividjian, N., Hagen, C.W., Kruit, P.: Spatial resolution limits in electron-beam-induced deposition. J. Appl. Phys. 98(8), 084905 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Botman, A., Mulders, J.J.L., Hagen, C.W.: Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)CrossRefGoogle Scholar
  45. 45.
    Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87(5–8), 1550–1553 (2010)CrossRefGoogle Scholar
  46. 46.
    Mulders, J.J.L., Belova, L.M., Riazanova, A.: Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22(5), 055302 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Belova, L.M., Dahlberg, E.D., Riazanova, A., Mulders, J.J.L., Christophersen, C., Eckert, J.: Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22(14), 145305 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Tripathi, S.K., Shukla, N., Rajput, N.S., Kulkarni, V.N.: The out of beam sight effects in focused ion beam processing. Nanotechnology 20(27), 275301 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Hernández-Ramírez, F., Rodríguez, J., Casals, O., Russinyol, E., Vila, A., Romano-Rodríguez, A., Morante, J.R., Abid, M.: Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sens. Actuators B-Chem. 118(1–2), 198–203 (2006)CrossRefGoogle Scholar
  50. 50.
    Li, W.X., Warburton, P.A.: Low-current focused-ion-beam induced deposition of three-dimensional tungsten nanoscale conductors. Nanotechnology 18(48), 485305 (2007)CrossRefGoogle Scholar
  51. 51.
    Hernández-Ramírez, F., et al.: Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18(49), 495501 (2007)CrossRefGoogle Scholar
  52. 52.
    Rius, G., Llobet, J., Esplandiu, M.J., Sole, L., Borrise, X., Perez-Murano, F.: Using electron and ion beams on carbon nanotube-based devices. Effects and considerations for nanofabrication. Microelectron. Eng. 86(4–6), 892–894 (2009)CrossRefGoogle Scholar
  53. 53.
    Marcano, N., Sangiao, S., Plaza, M., Perez, L., Fernández Pacheco, A., Córdoba, R., Sanchez, M.C., Morellón, L., Ibarra, M.R., De Teresa, J.M.: Weak-antilocalization signatures in the magnetotransport properties of individual electrodeposited Bi Nanowires. Appl. Phys. Lett. 96(8), 082110 (2010)Google Scholar
  54. 54.
    Muñoz-Rojas, D., Córdoba, R., Fernández-Pacheco, A., De Teresa, J.M., Sauthier, G., Fraxedas, J., Walton, R.I., Casan-Pastor, N.: High conductivity in hydrothermally grown AgCuO2 single crystals verified using focused-ion-beam-deposited nanocontacts. Inorg. Chem. 49(23), 10977–10983 (2010). doi: 10.1021/ic101420c CrossRefGoogle Scholar
  55. 55.
    Puers, R., Reyntjens, S.: Fabrication and testing of custom vacuum encapsulations deposited by focused ion beam direct-write CVD. Sens. Actuators A—Phys. 92(1–3), 249–256 (2001)CrossRefGoogle Scholar
  56. 56.
    Martínez-Pérez, M.J., Sesé, J., Luis, F., Córdoba, R., Drung, D., Schurig, T., Bellido, E., de Miguel, R., Gomez-Moreno, C., Lostao, A., Ruiz-Molina, D.: Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21(3), 345–348 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Neugebauer, C.A., Webb, M.B.: Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33(1), 74–82 (1962)ADSCrossRefGoogle Scholar
  58. 58.
    Edwards, P.P., Ramakrishnan, T.V., Rao, C.N.R.: The metal-nonmetal transition—a global perspective. J. Phys. Chem. 99(15), 5228–5239 (1995)CrossRefGoogle Scholar
  59. 59.
    Baibich, M.N., Broto, J.M., Fert, A., Vandau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    Kondo, J.: Anomalous Hall effect and magnetoresistance of ferromagnetic metals. Prog. Theoret. Phys. 27(4), 772–792 (1962)ADSCrossRefGoogle Scholar
  61. 61.
    Julliere, M.: Tunneling between ferromagnetic-films. Phys. Lett. A 54(3), 225–226 (1975)ADSCrossRefGoogle Scholar
  62. 62.
    Fujimori, H., Mitani, S., Ohnuma, S.: Tunnel-type GMR in Co-Al-O insulated granular system—its oxygen-concentration dependence. J. Magn. Magn. Mater. 156(1–3), 311–314 (1996)ADSCrossRefGoogle Scholar
  63. 63.
    Mitani, S., Fujimori, H., Takanashi, K., Yakushiji, K., Ha, J.G., Takahashi, S., Maekawa, S., Ohnuma, S., Kobayashi, N., Masumoto, T., Ohnuma, M., Hono, K.: Tunnel-MR and spin electronics in metal-nonmetal granular systems. J. Magn. Magn. Mater. 198–99, 179–184 (1999)CrossRefGoogle Scholar
  64. 64.
    Honda, S., Okada, T., Nawate, M., Tokumoto, M.: Tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films. Phys. Rev. B 56(22), 14566–14573 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    García-García, A., Vovk, A., Pardo, J.A., Strichovanec, P., Algarabel, P.A., Magén, C., De Teresa, J.M., Morellón, L., Ibarra, M.R.: Tunneling magnetoresistance in Fe/MgO granular multilayers. J. Appl. Phys. 107(3), 033704 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    Smit, J.: The spontaneous Hall effect in ferromagnetics-I. Physica 21(11), 877–887 (1955)ADSCrossRefGoogle Scholar
  68. 68.
    Smit, J.: The spontaneous Hall effect in ferromagnetics-II. Physica 24(1), 39–51 (1958)MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Berger, L.: Application of side-jump model to Hall-effect and Nernst effect in ferromagnets. Phys. Rev. B 1972, 5(5) (1862)Google Scholar
  70. 70.
    Onnes, H. K.: Leiden Communications, vol. 120 (1911)Google Scholar
  71. 71.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover Publications, Inc., New York (1996)Google Scholar
  72. 72.
    Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep.—Rev. Sect. Phys. Lett. 464(1–2), 1–70 (2008)Google Scholar
  73. 73.
    Grigorieva, I.V., Geim, A.K., Dubonos, S.V., Novoselov, K.S., Vodolazov, D.Y., Peeters, F.M., Kes, P.H., Hesselberth, M.: Long-range nonlocal flow of vortices in narrow superconducting channels. Phys. Rev. Lett. 92(23), 237001 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320(21), 2547–2562 (2008)CrossRefGoogle Scholar
  75. 75.
    Wu, C.H., Chou, Y.T., Kuo, W.C., Chen, J.H., Wang, L.M., Chen, J.C., Chen, K.L., Sou, U.C., Yang, H.C., Jeng, J.T.: Fabrication and characterization of high-Tc YBa2Cu3O(7-x) nanoSQUIDs made by focused ion beam milling. Nanotechnology 19(31), 315304 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Foley, C.P., Hilgenkamp, H.: Why nanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22(6), 064001 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Lam, S.K.H., Clem, J.R., Yang, W.: A nanoscale SQUID operating at high magnetic fields. Nanotechnology 22(45), 455501 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    Leggett, A.J.: Physics—Superconducting qubits—a major roadblock dissolved? Science 296(5569), 861–862 (2002)CrossRefGoogle Scholar
  80. 80.
    Bednorz, J.G., Müller, K.A.: Possible high-Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B—Condens. Matter 64(2), 189–193 (1986)ADSCrossRefGoogle Scholar
  81. 81.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130(11), 3296 (2008)CrossRefGoogle Scholar
  82. 82.
    Meissner, W., Ochsenfeld, R.: Short initial announcements. Naturwissenschaften 21, 787–788 (1933)ADSCrossRefGoogle Scholar
  83. 83.
    Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)Google Scholar
  84. 84.
    Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP-USSR 5(6), 1174–1183 (1957)Google Scholar
  85. 85.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)MathSciNetADSCrossRefzbMATHGoogle Scholar
  86. 86.
    Cooper, L.N.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104(4), 1189–1190 (1956)ADSCrossRefzbMATHGoogle Scholar
  87. 87.
    Fröhlich, H.: Theory of the superconducting state.1. The ground state at the absolute zero of temperature. Phys. Rev. 79(5), 845–856 (1950)ADSCrossRefzbMATHGoogle Scholar
  88. 88.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Modern Phys., 66(4), 1125–1388 (1994)Google Scholar
  89. 89.
    Larkin, A.I., Ovchinnikov, Y.N.: Vortex motion in superconductors. In: Nonequilibrium Superconductivity. North-Holland, Amsterdam (1986)Google Scholar
  90. 90.
    Bezryadin, A.: Quantum suppression of superconductivity in nanowires. J. Phys.—Condens. Matter, 20(4), 043202 (2008)Google Scholar
  91. 91.
    Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Switching currents limited by single phase slips in one-dimensional superconducting Al nanowires. Phys. Rev. Lett. 107(13), 137004 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    Papari, G., Carillo, F., Stornaiuolo, D., Longobardi, L., Beltram, F., Tafuri, F.: High critical current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25(3), 035011 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164(2), 498 (1967)ADSCrossRefGoogle Scholar
  94. 94.
    McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B—Solid State, 1(3), 1054 (1970)Google Scholar
  95. 95.
    Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10(9), 093005 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    Guillamón, I. Orden y desorden en superconductividad. Thesis, Universidad Autónoma de Madrid (2009)Google Scholar
  98. 98.
    Giaever, I.: Magnetic coupling between 2 adjacent type-2 superconductors. Phys. Rev. Lett. 15(21), 825 (1965)ADSCrossRefGoogle Scholar
  99. 99.
    Wortis, R., Huse, D.A.: Nonlocal conductivity in the vortex-liquid regime of a two-dimensional superconductor. Phys. Rev. B 54(17), 12413–12420 (1996)ADSCrossRefGoogle Scholar
  100. 100.
    López, D., Kwok, W.K., Safar, H., Olsson, R.J., Petrean, A.M., Paulius, L., Crabtree, G.W.: Spatially resolved dynamic correlation in the vortex state of high temperature superconductors. Phys. Rev. Lett. 82(6), 1277–1280 (1999)ADSCrossRefGoogle Scholar
  101. 101.
    Helzel, A., Kokanovic, I., Babic, D., Litvin, L.V., Rohlfing, F., Otto, F., Surgers, C., Strunk, C.: Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures. Phys. Rev. B 74(22), 220510 (2006)ADSCrossRefGoogle Scholar
  102. 102.
    Otto, F.: Nonlinear vortex transport in mesoscopic channel of amorphous NbGe. Thesis, Universitätsverlag Regensburg (2009)Google Scholar
  103. 103.
    Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Nonlocal versus local vortex dynamics in the transversal flux transformer effect. Phys. Rev. B 81(17), 174521 (2010)ADSCrossRefGoogle Scholar
  104. 104.
    Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Reversal of nonlocal vortex motion in the regime of strong nonequilibrium. Phys. Rev. Lett. 104(2), 027005 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratorio de Microscopías Avanzadas-Instituto de Nanociencia de Aragón; Department of Condensed Matter PhysicsUniversidad de ZaragozaZaragozaSpain

Personalised recommendations