Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition pp 1-30 | Cite as
Introduction
Chapter
First Online:
- 1 Mentions
- 634 Downloads
Abstract
This chapter we will describe the concepts of nanotechnology and nanoelectronics, then we will go on to the general fundamentals of the fabrication of nanostructures by FEBID and FIBID techniques with potential applications in superconductivity and spintronics. This is the general framework within which this thesis is classified, which is devoted largely to the fabrication and characterization of nanostructures that exhibit ferromagnetic or superconducting properties.
Keywords
High Resolution Transmission Electron Microscopy Lorentz Force Precursor Molecule Vortex Motion Physical Property Measurement System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)Google Scholar
- 2.Spaldin, N.: In: Magnetic Materials Fundamentals and Device Applications. Cambridge University Press, Cambridge (2003)Google Scholar
- 3.Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)ADSCrossRefGoogle Scholar
- 4.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
- 5.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRefGoogle Scholar
- 6.Novoselov, K.S.: Nobel lecture: graphene: materials in the Flatland. Rev. Mod. Phys. 83(3), 837–849 (2011)ADSCrossRefGoogle Scholar
- 7.Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)ADSCrossRefGoogle Scholar
- 8.van Kouwen, L., Botman, A., Hagen, C.W.: Focused electron-beam-induced deposition of 3 nm dots in a scanning electron microscope. Nano Lett. 9(5), 2149–2152 (2009)ADSCrossRefGoogle Scholar
- 9.Jonckheere, R., Bret, T., Van den Heuvel, D., Magana, J., Gao, W., Waiblinger, M.: Repair of natural EUV reticle defects. In: Maurer, W., Abboud, F.E., (eds.) Photomask Technology 2011, vol. 8166. SPIE—The International Society of Optical Engineering, Bellingham (2011)Google Scholar
- 10.Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams, p. 357. Springer Science, Boston (2005)CrossRefGoogle Scholar
- 11.Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11(4), 287–300 (2001)ADSCrossRefGoogle Scholar
- 12.Drouin, D.: Programa de simulación, CASINO (1996)Google Scholar
- 13.Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Gauvin, R.: CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007)CrossRefGoogle Scholar
- 14.Gomer, R.: Mechanims of liquid-metal electron and ion sources. Appl. Phys. 19(4), 365–375 (1979)ADSCrossRefGoogle Scholar
- 15.Ziegler, J.F.: Nuclear instruments & methods in physics research section B-Beam interactions with materials and atoms. 219, 1027 (2004)Google Scholar
- 16.Rius, G., Llobet, J., Arcamone, J., Borrise, X., Perez-Murano, F.: Electron- and ion-beam lithography for the fabrication of nanomechanical devices integrated on CMOS circuits. Microelectron. Eng. 86(4–6), 1046–1049 (2009)CrossRefGoogle Scholar
- 17.Rius, G., Llobet, J., Borrise, X., Mestres, N., Retolaza, A., Merino, S., Perez-Murano, F.: Fabrication of complementary metal-oxide-semiconductor integrated nanomechanical devices by ion beam patterning. J. Vac. Sci. Technol., B 27(6), 2691–2697 (2009)CrossRefGoogle Scholar
- 18.Melngailis, J., Mondelli, A.A., Berry, I.L., Mohondro, R.: A review of ion projection lithography. J. Vac. Sci. Technol., B 16(3), 927–957 (1998)CrossRefGoogle Scholar
- 19.Tseng, A.A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14(4), R15–R34 (2004)CrossRefGoogle Scholar
- 20.Tseng, A.A.: Recent developments in nanofabrication using focused ion beams. Small 1(10), 924–939 (2005)CrossRefGoogle Scholar
- 21.Miller, M.K., Russell, K.F.: Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107(9), 761–766 (2007)CrossRefGoogle Scholar
- 22.Miller, M.K., Russell, K.F., Thompson, G.B.: Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102(4), 287–298 (2005)CrossRefGoogle Scholar
- 23.Randolph, S.J., Fowlkes, J.D., Rack, P.D.: Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31(3), 55–89 (2006)ADSCrossRefGoogle Scholar
- 24.Martínez-Pérez, M.J., Sesé, J., Córdoba, R., Luis, F., Drung, D., Schuring, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Technol. 22(12), 125020 (2009)ADSCrossRefGoogle Scholar
- 25.Randolph, S.J., Fowlkes, J.D., Rack, P.D.: Focused electron-beam-induced etching of silicon dioxide. J. Appl. Phys. 98(3), 034902 (2005)ADSCrossRefGoogle Scholar
- 26.Yemini, M., Hadad, B., Liebes, Y., Goldner, A., Ashkenasy, N.: The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology 20(24), 245302 (2009)ADSCrossRefGoogle Scholar
- 27.Bret, T., Afra, B., Becker, R., Hofmann, T., Edinger, K., Liang, T., Hoffmann, P.: Gas assisted focused electron beam induced etching of alumina. J. Vac. Sci. Technol., B 27(6), 2727–2731 (2009)CrossRefGoogle Scholar
- 28.Wang, J.H., Griffis, D.P., Garcia, R., Russell, P.E.: Etching characteristics of chromium thin films by an electron beam induced surface reaction. Semicond. Sci. Technol. 18(4), 199–205 (2003)ADSCrossRefGoogle Scholar
- 29.Wang, S., Sun, Y.M., White, J.M., Stivers, A., Liang, T.: Electron-beam-assisted etching of CrOx films by Cl2. J. Vac. Sci. Technol., B 23(1), 206–209 (2005)CrossRefGoogle Scholar
- 30.Ganczarczyk, A., Geller, M., Lorke, A.: XeF2 gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution. Nanotechnology 22(4), 045301 (2011)ADSCrossRefGoogle Scholar
- 31.Lassiter, M.G., Liang, T., Rack, P.D.: Inhibiting spontaneous etching of nanoscale electron beam induced etching features: solutions for nanoscale repair of extreme ultraviolet lithography masks. J. Vac. Sci. Technol., B 26(3), 963–967 (2008)CrossRefGoogle Scholar
- 32.Roediger, P., Wanzenboeck, H.D., Hochleitner, G., Bertagnolli, E.: Crystallinity-retaining removal of germanium by direct-write focused electron beam induced etching. J. Vac. Sci. Technol., B, 29(4), 041801 (2011)Google Scholar
- 33.Schoenaker, F.J., Córdoba, R., Fernández-Pacheco, R., Magén, C., Stephan, O., Zuriaga-Monroy, C., Ibarra, M.R., De Teresa, J.M.: Focused electron beam induced etching of titanium with XeF2. Nanotechnology 22(26), 265304 (2011). doi: 10.1088/0957-4484/22/26/265304 ADSCrossRefGoogle Scholar
- 34.Santschi, C., Jenke, M., Hoffmann, P., Brugger, J.: Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17(11), 2722–2729 (2006)ADSCrossRefGoogle Scholar
- 35.Matsui, S., Mori, K.: New selective deposition technology by electron-beam induced surface-reaction. Jpn. J. Appl. Phys. Part 2-Lett. 23(9), L706–L708 (1984)Google Scholar
- 36.Matsui, S., Mori, K.: New selective deposition technology by electron-beam induced surface-reaction. J. Vac. Sci. Technol., B 4(1), 299–304 (1986)CrossRefGoogle Scholar
- 37.Koops, H.W.P., Weiel, R., Kern, D.P., Baum, T.H.: High-resolution electron-beam induced deposition. J. Vac. Sci. Technol., B 6(1), 477–481 (1988)CrossRefGoogle Scholar
- 38.Silvis-Cividjian, N., Hagen, C.W.: Electron-beam-induced nanometer-scale deposition. In: Advances in Imaging and Electron Physics, vol 143. Elsevier Academic Press Inc: San Diego (2006)Google Scholar
- 39.van Dorp, W.F., Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)ADSCrossRefGoogle Scholar
- 40.Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol., B 26(4), 1197–1276 (2008)CrossRefGoogle Scholar
- 41.Wnuk, J.D., Gorham, J.M., Rosenberg, S.G., van Dorp, W.F., Madey, T.E., Hagen, C.W., Fairbrother, D.H.: Electron induced surface reactions of the organometallic precursor trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem., C 113(6), 2487–2496 (2009)CrossRefGoogle Scholar
- 42.Fowlkes, J.D., Rack, P.D.: Fundamental electron-precursor-solid interactions derived from time-dependent electron-beam-induced deposition simulations and experiments. ACS Nano 4(3), 1619–1629 (2010)CrossRefGoogle Scholar
- 43.Silvis-Cividjian, N., Hagen, C.W., Kruit, P.: Spatial resolution limits in electron-beam-induced deposition. J. Appl. Phys. 98(8), 084905 (2005)ADSCrossRefGoogle Scholar
- 44.Botman, A., Mulders, J.J.L., Hagen, C.W.: Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)CrossRefGoogle Scholar
- 45.Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87(5–8), 1550–1553 (2010)CrossRefGoogle Scholar
- 46.Mulders, J.J.L., Belova, L.M., Riazanova, A.: Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22(5), 055302 (2011)ADSCrossRefGoogle Scholar
- 47.Belova, L.M., Dahlberg, E.D., Riazanova, A., Mulders, J.J.L., Christophersen, C., Eckert, J.: Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22(14), 145305 (2011)ADSCrossRefGoogle Scholar
- 48.Tripathi, S.K., Shukla, N., Rajput, N.S., Kulkarni, V.N.: The out of beam sight effects in focused ion beam processing. Nanotechnology 20(27), 275301 (2009)ADSCrossRefGoogle Scholar
- 49.Hernández-Ramírez, F., Rodríguez, J., Casals, O., Russinyol, E., Vila, A., Romano-Rodríguez, A., Morante, J.R., Abid, M.: Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sens. Actuators B-Chem. 118(1–2), 198–203 (2006)CrossRefGoogle Scholar
- 50.Li, W.X., Warburton, P.A.: Low-current focused-ion-beam induced deposition of three-dimensional tungsten nanoscale conductors. Nanotechnology 18(48), 485305 (2007)CrossRefGoogle Scholar
- 51.Hernández-Ramírez, F., et al.: Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18(49), 495501 (2007)CrossRefGoogle Scholar
- 52.Rius, G., Llobet, J., Esplandiu, M.J., Sole, L., Borrise, X., Perez-Murano, F.: Using electron and ion beams on carbon nanotube-based devices. Effects and considerations for nanofabrication. Microelectron. Eng. 86(4–6), 892–894 (2009)CrossRefGoogle Scholar
- 53.Marcano, N., Sangiao, S., Plaza, M., Perez, L., Fernández Pacheco, A., Córdoba, R., Sanchez, M.C., Morellón, L., Ibarra, M.R., De Teresa, J.M.: Weak-antilocalization signatures in the magnetotransport properties of individual electrodeposited Bi Nanowires. Appl. Phys. Lett. 96(8), 082110 (2010)Google Scholar
- 54.Muñoz-Rojas, D., Córdoba, R., Fernández-Pacheco, A., De Teresa, J.M., Sauthier, G., Fraxedas, J., Walton, R.I., Casan-Pastor, N.: High conductivity in hydrothermally grown AgCuO2 single crystals verified using focused-ion-beam-deposited nanocontacts. Inorg. Chem. 49(23), 10977–10983 (2010). doi: 10.1021/ic101420c CrossRefGoogle Scholar
- 55.Puers, R., Reyntjens, S.: Fabrication and testing of custom vacuum encapsulations deposited by focused ion beam direct-write CVD. Sens. Actuators A—Phys. 92(1–3), 249–256 (2001)CrossRefGoogle Scholar
- 56.Martínez-Pérez, M.J., Sesé, J., Luis, F., Córdoba, R., Drung, D., Schurig, T., Bellido, E., de Miguel, R., Gomez-Moreno, C., Lostao, A., Ruiz-Molina, D.: Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21(3), 345–348 (2011)ADSCrossRefGoogle Scholar
- 57.Neugebauer, C.A., Webb, M.B.: Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33(1), 74–82 (1962)ADSCrossRefGoogle Scholar
- 58.Edwards, P.P., Ramakrishnan, T.V., Rao, C.N.R.: The metal-nonmetal transition—a global perspective. J. Phys. Chem. 99(15), 5228–5239 (1995)CrossRefGoogle Scholar
- 59.Baibich, M.N., Broto, J.M., Fert, A., Vandau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)ADSCrossRefGoogle Scholar
- 60.Kondo, J.: Anomalous Hall effect and magnetoresistance of ferromagnetic metals. Prog. Theoret. Phys. 27(4), 772–792 (1962)ADSCrossRefGoogle Scholar
- 61.Julliere, M.: Tunneling between ferromagnetic-films. Phys. Lett. A 54(3), 225–226 (1975)ADSCrossRefGoogle Scholar
- 62.Fujimori, H., Mitani, S., Ohnuma, S.: Tunnel-type GMR in Co-Al-O insulated granular system—its oxygen-concentration dependence. J. Magn. Magn. Mater. 156(1–3), 311–314 (1996)ADSCrossRefGoogle Scholar
- 63.Mitani, S., Fujimori, H., Takanashi, K., Yakushiji, K., Ha, J.G., Takahashi, S., Maekawa, S., Ohnuma, S., Kobayashi, N., Masumoto, T., Ohnuma, M., Hono, K.: Tunnel-MR and spin electronics in metal-nonmetal granular systems. J. Magn. Magn. Mater. 198–99, 179–184 (1999)CrossRefGoogle Scholar
- 64.Honda, S., Okada, T., Nawate, M., Tokumoto, M.: Tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films. Phys. Rev. B 56(22), 14566–14573 (1997)ADSCrossRefGoogle Scholar
- 65.García-García, A., Vovk, A., Pardo, J.A., Strichovanec, P., Algarabel, P.A., Magén, C., De Teresa, J.M., Morellón, L., Ibarra, M.R.: Tunneling magnetoresistance in Fe/MgO granular multilayers. J. Appl. Phys. 107(3), 033704 (2010)ADSCrossRefGoogle Scholar
- 66.Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)ADSCrossRefGoogle Scholar
- 67.Smit, J.: The spontaneous Hall effect in ferromagnetics-I. Physica 21(11), 877–887 (1955)ADSCrossRefGoogle Scholar
- 68.Smit, J.: The spontaneous Hall effect in ferromagnetics-II. Physica 24(1), 39–51 (1958)MathSciNetADSCrossRefGoogle Scholar
- 69.Berger, L.: Application of side-jump model to Hall-effect and Nernst effect in ferromagnets. Phys. Rev. B 1972, 5(5) (1862)Google Scholar
- 70.Onnes, H. K.: Leiden Communications, vol. 120 (1911)Google Scholar
- 71.Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover Publications, Inc., New York (1996)Google Scholar
- 72.Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep.—Rev. Sect. Phys. Lett. 464(1–2), 1–70 (2008)Google Scholar
- 73.Grigorieva, I.V., Geim, A.K., Dubonos, S.V., Novoselov, K.S., Vodolazov, D.Y., Peeters, F.M., Kes, P.H., Hesselberth, M.: Long-range nonlocal flow of vortices in narrow superconducting channels. Phys. Rev. Lett. 92(23), 237001 (2004)ADSCrossRefGoogle Scholar
- 74.Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320(21), 2547–2562 (2008)CrossRefGoogle Scholar
- 75.Wu, C.H., Chou, Y.T., Kuo, W.C., Chen, J.H., Wang, L.M., Chen, J.C., Chen, K.L., Sou, U.C., Yang, H.C., Jeng, J.T.: Fabrication and characterization of high-Tc YBa2Cu3O(7-x) nanoSQUIDs made by focused ion beam milling. Nanotechnology 19(31), 315304 (2008)ADSCrossRefGoogle Scholar
- 76.Foley, C.P., Hilgenkamp, H.: Why nanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22(6), 064001 (2009)ADSCrossRefGoogle Scholar
- 77.Lam, S.K.H., Clem, J.R., Yang, W.: A nanoscale SQUID operating at high magnetic fields. Nanotechnology 22(45), 455501 (2011)ADSCrossRefGoogle Scholar
- 78.Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)ADSCrossRefGoogle Scholar
- 79.Leggett, A.J.: Physics—Superconducting qubits—a major roadblock dissolved? Science 296(5569), 861–862 (2002)CrossRefGoogle Scholar
- 80.Bednorz, J.G., Müller, K.A.: Possible high-Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B—Condens. Matter 64(2), 189–193 (1986)ADSCrossRefGoogle Scholar
- 81.Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130(11), 3296 (2008)CrossRefGoogle Scholar
- 82.Meissner, W., Ochsenfeld, R.: Short initial announcements. Naturwissenschaften 21, 787–788 (1933)ADSCrossRefGoogle Scholar
- 83.Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)Google Scholar
- 84.Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP-USSR 5(6), 1174–1183 (1957)Google Scholar
- 85.Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 86.Cooper, L.N.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104(4), 1189–1190 (1956)ADSCrossRefzbMATHGoogle Scholar
- 87.Fröhlich, H.: Theory of the superconducting state.1. The ground state at the absolute zero of temperature. Phys. Rev. 79(5), 845–856 (1950)ADSCrossRefzbMATHGoogle Scholar
- 88.Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Modern Phys., 66(4), 1125–1388 (1994)Google Scholar
- 89.Larkin, A.I., Ovchinnikov, Y.N.: Vortex motion in superconductors. In: Nonequilibrium Superconductivity. North-Holland, Amsterdam (1986)Google Scholar
- 90.Bezryadin, A.: Quantum suppression of superconductivity in nanowires. J. Phys.—Condens. Matter, 20(4), 043202 (2008)Google Scholar
- 91.Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Switching currents limited by single phase slips in one-dimensional superconducting Al nanowires. Phys. Rev. Lett. 107(13), 137004 (2011)ADSCrossRefGoogle Scholar
- 92.Papari, G., Carillo, F., Stornaiuolo, D., Longobardi, L., Beltram, F., Tafuri, F.: High critical current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25(3), 035011 (2012)ADSCrossRefGoogle Scholar
- 93.Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164(2), 498 (1967)ADSCrossRefGoogle Scholar
- 94.McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B—Solid State, 1(3), 1054 (1970)Google Scholar
- 95.Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004)ADSCrossRefGoogle Scholar
- 96.Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10(9), 093005 (2008)ADSCrossRefGoogle Scholar
- 97.Guillamón, I. Orden y desorden en superconductividad. Thesis, Universidad Autónoma de Madrid (2009)Google Scholar
- 98.Giaever, I.: Magnetic coupling between 2 adjacent type-2 superconductors. Phys. Rev. Lett. 15(21), 825 (1965)ADSCrossRefGoogle Scholar
- 99.Wortis, R., Huse, D.A.: Nonlocal conductivity in the vortex-liquid regime of a two-dimensional superconductor. Phys. Rev. B 54(17), 12413–12420 (1996)ADSCrossRefGoogle Scholar
- 100.López, D., Kwok, W.K., Safar, H., Olsson, R.J., Petrean, A.M., Paulius, L., Crabtree, G.W.: Spatially resolved dynamic correlation in the vortex state of high temperature superconductors. Phys. Rev. Lett. 82(6), 1277–1280 (1999)ADSCrossRefGoogle Scholar
- 101.Helzel, A., Kokanovic, I., Babic, D., Litvin, L.V., Rohlfing, F., Otto, F., Surgers, C., Strunk, C.: Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures. Phys. Rev. B 74(22), 220510 (2006)ADSCrossRefGoogle Scholar
- 102.Otto, F.: Nonlinear vortex transport in mesoscopic channel of amorphous NbGe. Thesis, Universitätsverlag Regensburg (2009)Google Scholar
- 103.Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Nonlocal versus local vortex dynamics in the transversal flux transformer effect. Phys. Rev. B 81(17), 174521 (2010)ADSCrossRefGoogle Scholar
- 104.Otto, F., Bilusic, A., Babic, D., Vodolazov, D.Y., Suergers, C., Strunk, C.: Reversal of nonlocal vortex motion in the regime of strong nonequilibrium. Phys. Rev. Lett. 104(2), 027005 (2010)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014