Skip to main content

Effective Work Region Visualization for Serial 6 DOF Robots

  • Conference paper
Enabling Manufacturing Competitiveness and Economic Sustainability

Abstract

Optimal serial 6 degree of freedom (DOF) robot path planning has challenges due to the kinematic structures, singularity conditions, and the practical reach limits due to the a path-fixture-end effector orientation and design-robot structure combination. Previous research has been done to define and visualize the functional reach limits for a robot-end effector orientation-end effector tool geometry set. This is expanded and combined with singularity region analyses to be able to visualize the total effective travel path regions for a target application (i.e., FANUC, ABB, or Comau robot families) using the MATLAB toolbox. Visualization tools that represent both the functional work region or work window and singularity regions are presented. This research will provide designers the ability to assess a wide range of industrial robot configurations comprehensively at the design or redesign stages as the valid bounded region defined in this work can be employed for subsequent downstream optimization related to velocity and acceleration control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable Manufacturing Systems. Annals-Manufacturing Technology 48(2), 527–540 (1999)

    Article  Google Scholar 

  2. Nof, S.Y.: Handbook of Industrial Robotics, 2nd edn. John Wiley & Sons, New York (1999)

    Book  Google Scholar 

  3. Ceccarelli, M., Lanni, C.: A Multi-objective Optimum Design of General 3R Manipulators for Prescribed Workspace Limits. Mechanisms and Machine Theory 39, 119–132 (2003)

    Article  MathSciNet  Google Scholar 

  4. Cebula, A.J., Zsombor-Murray, P.J.: Formulation of the Workspace Equation for Wrist-Partitioned Spatial Manipulators. Mechanisms and Machine Theory 41, 778–789 (2006)

    Article  MATH  Google Scholar 

  5. Castelli, G., Ottaviano, E., Ceccarelli, M.: A Fairly General Algorithm to Evaluate Workspace Characteristics of Serial and Parallel Manipulators. Mechanics Based Design of Structures and Machines 36, 14–33 (2008)

    Article  Google Scholar 

  6. Yang, J., Yu, W., Kim, J., Abdel-Malet, K.: On the Placement of Open-Loop Robotic Manipulators for Reachability. Mechanism and Machine Theory 44, 671–684 (2009)

    Article  MATH  Google Scholar 

  7. Djuric, A.M., ElMaraghy, W.H.: Filtering Boundary Points of the Robot Workspace. In: 5th International Conference on Digital Enterprise Technology, Nantes, France (October 2008)

    Google Scholar 

  8. Djuric, A.M., Urbanic, R.J.: A Methodology for Defining the Functional Space (Work Window) for a Machine Configuration. In: 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production, Munich, October 5-7 (2009)

    Google Scholar 

  9. Orin, D.E., Schrader, W.W.: Efficient Computation of the Jacobian for Robot Manipulators. In: The First International Symposium on Robotics Research, pp. 727–734. MIT Press, Cambridge (1984)

    Google Scholar 

  10. Fu, K.S., Gonzalez, R.C., Lee, C.S.G.: Robotics: control, sensing, vision, and intelligence, pp. 12–82. McGraw-Hill Inc. (1987)

    Google Scholar 

  11. Leathy, M.B., Nugent Jr., L.M., Saridis, G.N., Valavanis, K.P.: Efficient PUMA Manipulator Jacobian Calculation and Inversion. Journal of Robotic Systems 4(2), 185–197 (1987)

    Article  Google Scholar 

  12. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. J. Wiley and Son, New York (1989)

    Google Scholar 

  13. Cheng, F.T., Hour, T.L., Sun, Y.Y., Chen, T.H.: Study and Resolution of Singularities for a 6-DOF PUMA Manipulators. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 27(2), 332–343 (1997)

    Article  Google Scholar 

  14. Oetomo, D., Marcelo, H.A., Lim, S.Y.: Singularity Handling on Puma in Operational Space Formulation, Transactions. In: Canadian Society of Mechanical Engineers, ISER, pp. 491–500 (2000)

    Google Scholar 

  15. Yuan, J.: Local SVD Inverse of Robot Jacobian. Robotica 19, 79–86 (2001)

    Article  Google Scholar 

  16. Pieper, D.L.: The kinematics of manipulators under computer control. PhD Thesis, Stanford University, Artificial Intelligence Project Memo 72 (1968)

    Google Scholar 

  17. Vassilios, D.T., Marcelo Jr., H.A.: Task decoupling in robot manipulators. Journal of Intelligent and Robotic Systems 14(3), 283–302 (1995)

    Article  Google Scholar 

  18. Gogu, G.: Families of 6R orthogonal robotic manipulators with only isolated and pseudo-isolated singularities. Mechanism and Machine Theory 37(11), 1347–1375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayes, M.J.D., Husty, M.L., Zsombor-Murray, P.J.: Singular Configurations of Wrist-Partitioned 6R Serial Robots: a Geometric Perspective for Users. In: Canadian Society of Mechanical Engineers, vol. 26(1), pp. 41–55 (2002)

    Google Scholar 

  20. Fijany, A., Bejczy, A.K.: Efficient of Jacobian Inversion for the Control of Simple Robot Manipulators. IEEE Robotics and Automation 2, 999–1007 (1988)

    Google Scholar 

  21. Denavit, J., Hartenberg, R.S.: A Kinematic Notation for Lower-pair Mechanisms Based on Matrices. Journal of Applied Mechanics 77, 215–221 (1955)

    MathSciNet  Google Scholar 

  22. Urbanic, R.J., Gudla, A.: Functional Work Space Estimation of a Robot using Forward Kinematics, D-H Parameters, and Shape Analyses. In: Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, paper ESDA 2012 – 83001 (2012)

    Google Scholar 

  23. Krause, F.L., Kimura, F., Kjellberg, T., Lu, S.C.Y.: Product Modelling. Annals of the CIRP 42(2), 695–706 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Djuric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Djuric, A., Urbanic, J., Filipovic, M., Kevac, L. (2014). Effective Work Region Visualization for Serial 6 DOF Robots. In: Zaeh, M. (eds) Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-02054-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02054-9_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02053-2

  • Online ISBN: 978-3-319-02054-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics