Skip to main content

On the Investigation of Excited State Dynamics with (Pump-)Degenerate Four Wave Mixing

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 107))

Abstract

Multidimensional time-resolved spectroscopy allows disentangling particular aspects of the molecular dynamics, which are normally hidden from linear techniques. In this chapter, we show how third- and fifth-order techniques using sub-20 fs pulses can be applied to address coherence and population dynamics in the excited states of biomolecules. In particular, broadband four wave mixing is combined with an initial pump pulse to promote population to the excited state. With this approach, it is possible to interrogate the potential surface of the excited and ground states during the excited state evolution with a time resolution better than 20 fs. Three general aspects of the excited state dynamics are discussed. (1) The assignment of vibrational coherence to the respective excited state potential is illustrated for retinal in solution and in the protein environment. By changing the excitation wavelength and comparing low- and high-frequency vibrational coherence content, it is shown that low-frequency modes are predominantly originated in the excited state, while high-frequency modes belong to the ground state. (2) The temporal resolution of dark electronic states in lycopene is investigated with pump-DFWM. Contrasting to lower-order techniques, pump-DFWM allows to snapshot the ultrafast population relaxation directly after the excitation of the S2 electronic state. (3) The evolution of the vibrational coherence in the excited state is demonstrated for β-carotene. This gives accurate information on the instantaneous frequency, populations and even anharmonicities of all relevant vibrational modes on the potential surface of the excited state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Dantus, M.J. Rosker, A.H. Zewail, Real-time femtosecond probing of transition-states in chemical-reactions. J. Chem. Phys. 87(4), 2395–2397 (1987)

    Article  CAS  Google Scholar 

  2. J. Dobler et al., Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem. Phys. Lett. 144(2), 215–220 (1988)

    Article  CAS  Google Scholar 

  3. R.A. Mathies et al., Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240(4853), 777–779 (1988)

    Article  CAS  Google Scholar 

  4. P.F. Barbara, G.C. Walker, T.P. Smith, Vibrational-modes and the dynamic solvent effect in electron and proton-transfer. Science 256(5059), 975–981 (1992)

    Article  CAS  Google Scholar 

  5. J.L. Herek et al., Femtosecond real-time probing of reactions. 9. Hydrogen-atom transfer. J. Chem. Phys. 97(12), 9046–9061 (1992)

    Article  CAS  Google Scholar 

  6. K. Lenz et al., Resonance Raman and femtosecond absorption studies of vibrational-relaxation initiated by ultrafast intramolecular proton-transfer. Chem. Phys. Lett. 229(4–5), 340–346 (1994)

    Article  CAS  Google Scholar 

  7. A.H. Zewail, Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100(31), 12701–12724 (1996)

    Article  CAS  Google Scholar 

  8. W. Fuss, W.E. Schmid, S.A. Trushin, Time-resolved dissociative intense-laser field ionization for probing dynamics: femtosecond photochemical ring opening of 1, 3-cyclohexadiene. J. Chem. Phys. 112(19), 8347–8362 (2000)

    Article  CAS  Google Scholar 

  9. M. Dantus, Coherent nonlinear spectroscopy: from femtosecond dynamics to control. Annu. Rev. Phys. Chem. 52, 639 (2001)

    Article  CAS  Google Scholar 

  10. W. Wohlleben et al., Coherent control for spectroscopy and manipulation of biological dynamics. ChemPhysChem 6(5), 850–857 (2005)

    Article  CAS  Google Scholar 

  11. R.W. Schoenlein et al., The 1st step in vision—femtosecond isomerization of rhodopsin. Science 254(5030), 412–415 (1991)

    Article  CAS  Google Scholar 

  12. T. Polívka, V. Sundström, Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem. Rev. 104(4), 2021–2071 (2004)

    Article  Google Scholar 

  13. D. Polli et al., Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids. Chem. Phys. 350(1–3), 45–55 (2008)

    Article  CAS  Google Scholar 

  14. T. Kobayashi, T. Saito, H. Ohtani, Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414(6863), 531–534 (2001)

    Article  CAS  Google Scholar 

  15. A. Kahan et al., Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J. Am. Chem. Soc. 129(3), 537–546 (2007)

    Article  CAS  Google Scholar 

  16. S. Mukamel, Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000)

    Article  CAS  Google Scholar 

  17. W. Wohlleben et al., Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. Biophys. J. 85(1), 442–450 (2003)

    Article  CAS  Google Scholar 

  18. I.H.M. Vanstokkum et al., Conformational dynamics of flexibly and semirigidly bridged electron donor-acceptor systems as revealed by spectrotemporal parameterization of fluorescence. J. Phys. Chem. 98(3), 852–866 (1994)

    Article  CAS  Google Scholar 

  19. J. Oberle et al., Enhancement and subpicosecond dynamics of optical nonlinearities of excited-states—trans-stilbene in solution. Chem. Phys. Lett. 241(4), 281–289 (1995)

    Article  CAS  Google Scholar 

  20. M. Motzkus, S. Pedersen, A.H. Zewail, Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J. Phys. Chem. 100(14), 5620–5633 (1996)

    Article  CAS  Google Scholar 

  21. T. Buckup et al., Multidimensional spectroscopy of beta-carotene: vibrational cooling in the excited state. Arch. Biochem. Biophys. 483(2), 219–223 (2009)

    Article  CAS  Google Scholar 

  22. J. Hauer, T. Buckup, M. Motzkus, Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J. Phys. Chem. A 111(42), 10517–10529 (2007)

    Article  CAS  Google Scholar 

  23. J.P. Kraack, M. Motzkus, T. Buckup, Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J. Chem. Phys. 135, 224505 (2011)

    Article  Google Scholar 

  24. T. Joo, A.C. Albrecht, Electronic dephasing studies of molecules in solution at room-temperature by femtosecond degenerate 4-wave-mixing. Chem. Phys. 176(1), 233–247 (1993)

    Article  CAS  Google Scholar 

  25. T.H. Joo, A.C. Albrecht, Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved 4-wave-mixing. Chem. Phys. 173(1), 17–26 (1993)

    Article  CAS  Google Scholar 

  26. B.I. Grimberg et al., Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation. J. Phys. Chem. A 106(5), 697–718 (2002)

    Article  CAS  Google Scholar 

  27. S. Mukamel, J.D. Biggs, Communication: Comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134(16) (2011)

    Google Scholar 

  28. T. Hornung, H. Skenderovic, M. Motzkus, Observation of all-trans-beta-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump-DFWM. Chem. Phys. Lett. 402(4–6), 283–288 (2005)

    Article  CAS  Google Scholar 

  29. J.P. Kraack et al., Ground- and excited-state vibrational coherence dynamics in bacteriorhodopsin probed with degenerate four-wave-mixing experiments. ChemPhysChem 12(10), 1851–1859 (2011)

    Article  CAS  Google Scholar 

  30. J.P. Kraack, T. Buckup, M. Motzkus, Vibrational analysis of ground and excited electronic states of all-trans retinal protonated Schiff-bases. Phys. Chem. Chem. Phys. 13, 21402–21410 (2011)

    Article  CAS  Google Scholar 

  31. M.S. Marek, T. Buckup, M. Motzkus, Direct observation of a dark state in lycopene using pump-DFWM. J. Phys. Chem. B 115(25), 8328–8337 (2011)

    Article  CAS  Google Scholar 

  32. G. Beadie et al., Towards a FAST-CARS anthrax detector: analysis of cars generation from DPA. J. Mod. Opt. 51(16–18), 2627–2635 (2004)

    Article  CAS  Google Scholar 

  33. M. Mehendale et al., All-ultraviolet time-resolved coherent anti-Stokes Raman scattering. Opt. Lett. 31(2), 256–258 (2006)

    Article  CAS  Google Scholar 

  34. N. Hampp, Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 100(5), 1755–1776 (2000)

    Article  CAS  Google Scholar 

  35. I. Iwakura, A. Yabushita, T. Kobayashi, Observation of transition state in Raman triggered oxidation of chloroform in the ground state by real-time vibrational spectroscopy. Chem. Phys. Lett. 457(4–6), 421–426 (2008)

    Article  CAS  Google Scholar 

  36. O. Bismuth et al., Photochemical dynamics of all-trans retinal protonated Schiff-base in solution: excitation wavelength dependence. Chem. Phys. 341(1–3), 267–275 (2007)

    Article  CAS  Google Scholar 

  37. B. Loevsky et al., A new spectral window on retinal protein photochemistry. J. Am. Chem. Soc. 133(6), 1626–1629 (2011)

    Article  CAS  Google Scholar 

  38. A.B. Myers, R.A. Harris, R.A. Mathies, Resonance Raman excitation profiles of bacteriorhodopsin. J. Chem. Phys. 79(2), 603–613 (1983)

    Article  CAS  Google Scholar 

  39. B.X. Hou et al., Comparing photoinduced vibrational coherences in bacteriorhodopsin and in native and locked retinal protonated Schiff bases. Chem. Phys. Lett. 381(5–6), 549–555 (2003)

    Article  CAS  Google Scholar 

  40. G. Zgrablic, S. Haacke, M. Chergui, Vibrational coherences of the protonated Schiff base of all-trans retinal in solution. Chem. Phys. 338(2–3), 168–174 (2007)

    Article  CAS  Google Scholar 

  41. J. Léonard et al., Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Proc. Natl. Acad. Sci. USA 106(19), 7718–7723 (2009)

    Article  Google Scholar 

  42. S.P. Balashov et al., Quantum yield ratio of the forward and back light reactions of bacteriorhodopsin at low-temperature and photosteady-state concentration of the bathoproduct-k. Photochem. Photobiol. 54(6), 955–961 (1991)

    Article  CAS  Google Scholar 

  43. I. Vaya et al., Fluorescence of natural DNA: from the femtosecond to the nanosecond time scales. J. Am. Chem. Soc. 132(34), 11834–11835 (2010)

    Article  CAS  Google Scholar 

  44. R. Nakamura et al., Dark excited states of carotenoid regulated by bacteriochlorophyll in photosynthetic light harvesting. J. Phys. Chem. B (2011)

    Google Scholar 

  45. Y. Koyama et al., Excited-state dynamics of overlapped optically-allowed 1B(u)(+) and optically-forbidden 1B(u)(−) or 3A(g)(−) vibronic levels of carotenoids: possible roles in the light-harvesting function. Int. J. Mol. Sci. 11(4), 1888–1929 (2010)

    Article  CAS  Google Scholar 

  46. E. Ostroumov et al., Electronic coherence provides a direct proof for energy-level crossing in photoexcited lutein and beta-carotene. Phys. Rev. Lett. 103(10) (2009)

    Google Scholar 

  47. P. Tavan, K. Schulten, The low-lying electronic excitations in long polyenes: a PPP-MRD-CL study. J. Chem. Phys. 85(11), 6602–6609 (1986)

    Article  CAS  Google Scholar 

  48. P.J. Walla et al., Excited-state kinetics of the carotenoid S-1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution: efficient car S-1 → Chl electronic energy transfer via hot S-1 states? J. Phys. Chem. A 106(10), 1909–1916 (2002)

    Article  CAS  Google Scholar 

  49. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995), p. 543

    Google Scholar 

  50. P.H. Vaccaro, Advanced Series in Physical Chemistry: Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, New York, 1994)

    Google Scholar 

  51. G. Cerullo et al., Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298(5602), 2395–2398 (2002)

    Article  CAS  Google Scholar 

  52. D. Kosumi et al., The dependence of the ultrafast relaxation kinetics of the S-2 and S-1 states in beta-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J. Chem. Phys. 130(21) (2009)

    Google Scholar 

  53. R. Fujii et al., Two different pathways of internal conversion in carotenoids depending on the length of the conjugated chain. Chem. Phys. Lett. 369(1–2), 165–172 (2003)

    Article  CAS  Google Scholar 

  54. D.W. McCamant, P. Kukura, R.A. Mathies, Femtosecond time-resolved stimulated Raman spectroscopy: application to the ultrafast internal conversion in beta-carotene. J. Phys. Chem. A 107(40), 8208–8214 (2003)

    Article  CAS  Google Scholar 

  55. F.S. Rondonuwu et al., Singlet internal conversion processes in the order of IBu → 3A(g) (−) → IBu → 2A(g) (−) → IA (g) (−) in all-trans-spheroidene and lycopene as revealed by subpicosecond time-resolved Raman spectroscopy. Chem. Phys. Lett. 429(1–3), 234–238 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Motzkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buckup, T., Kraack, J.P., Marek, M.S., Motzkus, M. (2014). On the Investigation of Excited State Dynamics with (Pump-)Degenerate Four Wave Mixing. In: de Nalda, R., Bañares, L. (eds) Ultrafast Phenomena in Molecular Sciences. Springer Series in Chemical Physics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-02051-8_9

Download citation

Publish with us

Policies and ethics