Skip to main content

XUV Lasers for Ultrafast Electronic Control in H2

  • Chapter
Ultrafast Phenomena in Molecular Sciences

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 107))

Abstract

Manipulation and control of molecular electron dynamics is currently in the spotlight for numerous multidisciplinary applications in physics, chemistry and biology. During the last decade, free electron lasers and sources based on high-order harmonic generation have been successfully developed to enable the generation of femtosecond and attosecond intense radiation pulses in the ultraviolet and soft X-ray regions. These tools have lead to an outbreak of pump-probe experiments suited to explore structural dynamics in atoms and molecules with spatial and temporal resolutions on the atomic length and intrinsic electronic time scales, respectively. Such experiments, using hydrogen molecules (H2, D2) as prototypical examples, have been performed to study molecular dissociative single and multi-photon ionization, photon-induced symmetry breaking in molecular dissociation, and time-resolved imaging of coherent nuclear wave-packets. The counterpart state-of-the-art time-dependent theoretical methods, able to provide a solid groundwork for describing and interpreting the underlying ultrafast physical molecular dynamics in such experiments, are still scarce. The difficulty is to achieve an accurate description accounting for the full dimensionality of the problem. A proper treatment of nuclear degrees of freedom is already indispensable to study multiphoton single ionization of diatomic molecules. This is discussed in the present manuscript in different applications. We first examine the role of the coupled electronic and nuclear motions in problems that probe coherent nuclear wave-packets using intense UV pulses and in resonance-enhanced multiphoton single ionization (REMPI) processes, whose rates are underestimated when using approaches within the fixed nuclei approximation. Later, we show that for highly intense fields the presence of vibrational structure leads to step-ladder Rabi oscillations that are probed in the REMPI probabilities. Finally, we demonstrate the suitability of these time-dependent full-dimensional treatments to provide time-resolved images of autoionization of H2, following the time evolution of both electron and proton distributions after the interaction with ultrashort pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz, Nature 433, 596 (2005)

    Article  CAS  Google Scholar 

  2. A.H. Zewail, Annu. Rev. Phys. Chem. 57(1), 65–103 (2006)

    Article  CAS  Google Scholar 

  3. S. Lunnemann, A.I. Kuleff, L.S. Cederbaum, J. Chem. Phys. 129(10), 104305 (2008)

    Article  Google Scholar 

  4. A.H. Zewail, J. Phys. Chem. A 104(24), 5660–5694 (2000)

    Article  CAS  Google Scholar 

  5. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66(9), 1463–1545 (2003)

    Article  CAS  Google Scholar 

  6. C. Bostedt, H.N. Chapman, J.T. Costello, J.R. Crespo López-Urrutia, S. Düsterer, S.W. Epp, J. Feldhaus, A. Föhlisch, M. Meyer, T. Möller, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 601(1–2), 108–122 (2009)

    Article  CAS  Google Scholar 

  7. A. Barty, J. Phys. B, At. Mol. Opt. Phys. 43(19), 194014 (2010)

    Article  Google Scholar 

  8. J.U.H. Chapman, J.M. Rost, J. Phys. B, At. Mol. Opt. Phys. 43(19), 190201 (2010)

    Article  Google Scholar 

  9. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, F. Krausz, Science 291(5510), 1923–1927 (2001)

    Article  CAS  Google Scholar 

  10. M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509–513 (2001)

    Article  CAS  Google Scholar 

  11. P. Salières, M. Lewenstein, Meas. Sci. Technol. 12, 1818 (2001)

    Article  Google Scholar 

  12. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Science 314(5798), 443–446 (2006)

    Article  CAS  Google Scholar 

  13. A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B, At. Mol. Opt. Phys. 39(1), 1 (2006)

    Article  Google Scholar 

  14. E. Goulielmakis, V.S. Yakovlev, A.L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, Science 317(5839), 769–775 (2007)

    Article  CAS  Google Scholar 

  15. M.F. Kling, M.J.J. Vrakking, Annu. Rev. Phys. Chem. 59(1), 463–492 (2008)

    Article  CAS  Google Scholar 

  16. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163–234 (2009)

    Article  Google Scholar 

  17. B. Sheehy, B. Walker, L.F. DiMauro, Phys. Rev. Lett. 74(24), 4799–4802 (1995)

    Article  CAS  Google Scholar 

  18. J.H. Posthumus, Rep. Prog. Phys. 67(5), 623 (2004)

    Article  CAS  Google Scholar 

  19. C.R. Calvert, W.A. Bryan, W.R. Newell, I.D. Williams, Phys. Rep. 491(1), 1–28 (2010)

    Article  CAS  Google Scholar 

  20. A. Lafosse, M. Lebech, J.C. Brenot, P.M. Guyon, L. Spielberger, O. Jagutzki, J.C. Houver, D. Dowek, J. Phys. B, At. Mol. Opt. Phys. 36(23), 4683 (2003)

    Article  CAS  Google Scholar 

  21. F. Martín, J. Fernández, T. Havermeier, L. Foucar, T. Weber, K. Kreidi, M. Schöffler, L. Schmidt, T. Jahnke, O. Jagutzki, A. Czasch, E.P. Benis, T. Osipov, A.L. Landers, A. Belkacem, M.H. Prior, H. Schmidt-Böcking, C.L. Cocke, R. Dörner, Science 315(5812), 629–633 (2007)

    Article  Google Scholar 

  22. D. Dowek, J.F. Pérez-Torres, Y.J. Picard, P. Billaud, C. Elkharrat, J.C. Houver, J.L. Sanz-Vicario, F. Martín, Phys. Rev. Lett. 104(23), 2–5 (2010)

    Article  Google Scholar 

  23. T. Reddish, A. Padmanabhan, M. MacDonald, L. Zuin, J. Fernández, A. Palacios, F. Martín, Phys. Rev. Lett. 108(2), 1–5 (2012)

    Article  Google Scholar 

  24. M. Glass-Maujean, J. Chem. Phys. 85, 4830–4834 (1986)

    Article  CAS  Google Scholar 

  25. M. Glass-Maujean, J. Chem. Phys. 89, 2839 (1988)

    Article  CAS  Google Scholar 

  26. M. Glass-Maujean, H. Schmoranzer, J. Phys. B, At. Mol. Opt. Phys. 38(8), 1093–1105 (2005)

    Article  CAS  Google Scholar 

  27. E.M. García, J.A. Ruiz, S. Menmuir, E. Rachlew, P. Erman, A. Kivimäki, M. Glass-Maujean, R. Richter, M. Coreno, J. Phys. B, At. Mol. Opt. Phys. 39(2), 205 (2006)

    Article  Google Scholar 

  28. S. Arai, T. Kamosaki, M. Ukai, K. Shinsaka, Y. Hatano, Y. Ito, H. Koizumi, A. Yagishita, K. Ito, K. Tanaka, J. Chem. Phys. 88, 3016 (1988)

    Article  CAS  Google Scholar 

  29. T. Odagiri, M. Murata, M. Kato, N. Kouchi, J. Phys. B, At. Mol. Opt. Phys. 37(19), 3909 (2004)

    Article  CAS  Google Scholar 

  30. J.D. Bozek, J.E. Furst, T.J. Gay, H. Gould, A.L.D. Kilcoyne, J.R. Machacek, F. Martín, K.W. McLaughlin, J.L. Sanz-Vicario, J. Phys. B, At. Mol. Opt. Phys. 39(23), 4871 (2006)

    Article  CAS  Google Scholar 

  31. J.R. Machacek, V.M. Andrianarijaona, J.E. Furst, A.L.D. Kilcoyne, A.L. Landers, E.T. Litaker, K.W. McLaughlin, T.J. Gay, J. Phys. B, At. Mol. Opt. Phys. 44(4), 045201 (2011)

    Article  Google Scholar 

  32. K. Hoshina, A. Hishikawa, K. Kato, T. Sako, K. Yamanouchi, E.J. Takahashi, Y. Nabekawa, K. Midorikawa, J. Phys. B, At. Mol. Opt. Phys. 39(4), 813–829 (2006)

    Article  CAS  Google Scholar 

  33. Y.H. Jiang, A. Rudenko, J.F. Pérez-Torres, O. Herrwerth, L. Foucar, M. Kurka, K.U. Kühnel, M. Toppin, E. Plésiat, F. Morales, F. Martín, M. Lezius, M.F. Kling, T. Jahnke, R. Dörner, J.L. Sanz-Vicario, J. van Tilborg, A. Belkacem, M. Schulz, K. Ueda, T.J.M. Zouros, S. Düsterer, R. Treusch, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. A 81(5), 1–4 (2010)

    Article  Google Scholar 

  34. Y.H. Jiang, A. Rudenko, E. Plésiat, L. Foucar, M. Kurka, K.U. Kühnel, T. Ergler, J.F. Pérez-Torres, F. Martín, O. Herrwerth, M. Lezius, M.F. Kling, J. Titze, T. Jahnke, R. Dörner, J.L. Sanz-Vicario, M. Schöffler, J. van Tilborg, A. Belkacem, K. Ueda, T.J.M. Zouros, S. Düsterer, R. Treusch, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. A 81(2), 1–4 (2010)

    Article  Google Scholar 

  35. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Science 292(5522), 1689–1692 (2001)

    Article  CAS  Google Scholar 

  36. K.P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M.M. Murnane, H.C. Kapteyn, I.V. Litvinyuk, C.L. Cocke, Phys. Rev. Lett. 104(2), 1–4 (2010)

    Article  Google Scholar 

  37. G. Sansone, F. Kelkensberg, J.F. Pérez-Torres, F. Morales, M.F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J.L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M.Y. Ivanov, M. Nisoli, F. Martín, M.J.J. Vrakking, Nature 465(7299), 763–766 (2010)

    Article  CAS  Google Scholar 

  38. F. Kelkensberg, W. Siu, J.F. Pérez-Torres, F. Morales, G. Gademann, A. Rouzée, P. Johnsson, M. Lucchini, F. Calegari, J.L. Sanz-Vicario, F. Martín, M.J.J. Vrakking, Phys. Rev. Lett. 107, 043002 (2011)

    Article  CAS  Google Scholar 

  39. C.H. Greene, B. Yoo, J. Phys. Chem. 99(6), 1711–1718 (1995)

    Article  CAS  Google Scholar 

  40. J. Colgan, D. Glass, K. Higgins, P. Burke, J. Phys. B, At. Mol. Opt. Phys. 34, 2089 (2001)

    Article  CAS  Google Scholar 

  41. A. Apalategui, A. Saenz, J. Phys. B, At. Mol. Opt. Phys. 35, 1909 (2002)

    Article  CAS  Google Scholar 

  42. A. Awasthi, Y.V. Vanne, A. Saenz, J. Phys. B, At. Mol. Opt. Phys. 38, 3973 (2005)

    Article  CAS  Google Scholar 

  43. C. Meier, V. Engel, Phys. Rev. Lett. 73, 3207–3210 (1994)

    Article  CAS  Google Scholar 

  44. Z. Sun, N. Lou, Phys. Rev. Lett. 91, 023002 (2003)

    Article  Google Scholar 

  45. I. Sánchez, F. Martín, J. Chem. Phys. 106(18), 7720 (1997)

    Article  Google Scholar 

  46. I. Sánchez, F. Martín, Phys. Rev. Lett. 79, 1654–1657 (1997)

    Article  Google Scholar 

  47. I. Sánchez, F. Martín, Phys. Rev. A 57(2), 1006–1017 (1998)

    Article  Google Scholar 

  48. I. Sánchez, F. Martín, J. Chem. Phys. 110, 6702–6713 (1999)

    Article  Google Scholar 

  49. H. Feshbach, Ann. Phys. 19, 287–313 (1962)

    Article  CAS  Google Scholar 

  50. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545–591 (2000)

    Article  CAS  Google Scholar 

  51. A. Palacios, H. Bachau, F. Martín, Phys. Rev. Lett. 96(14), 143001 (2006)

    Article  CAS  Google Scholar 

  52. A. Palacios, H. Bachau, F. Martin, Phys. Rev. A 74(3), 1–4 (2006)

    Article  Google Scholar 

  53. J. Sanz-Vicario, H. Bachau, F. Martín, Phys. Rev. A 73(3), 1–12 (2006)

    Article  Google Scholar 

  54. J. Sanzvicario, A. Palacios, J. Cardona, H. Bachau, F. Martín, J. Electron Spectrosc. Relat. Phenom. 161(1–3), 182–187 (2007)

    Article  CAS  Google Scholar 

  55. A.S. Kheifets, Phys. Rev. A 71, 022704 (2005)

    Article  Google Scholar 

  56. A.S. Kheifets, I. Bray, Phys. Rev. A 72, 022703 (2005)

    Article  Google Scholar 

  57. J. Colgan, M.S. Pindzola, F. Robicheaux, Phys. Rev. Lett. 98, 153001 (2007)

    Article  CAS  Google Scholar 

  58. T.-G. Lee, M.S. Pindzola, F. Robicheaux, J. Phys. B, At. Mol. Opt. Phys. 43(16), 165601 (2010)

    Article  Google Scholar 

  59. W. Vanroose, F. Martín, T.N. Rescigno, C.W. McCurdy, Science 310(5755), 1787–1789 (2005)

    Article  CAS  Google Scholar 

  60. L. Tao, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 82, 023423 (2010)

    Article  Google Scholar 

  61. X. Guan, K. Bartschat, B.I. Schneider, Phys. Rev. A 83, 043403 (2011)

    Article  Google Scholar 

  62. W. Vanroose, D. Horner, F. Martín, T. Rescigno, C. McCurdy, Phys. Rev. A 74(5), 1–19 (2006)

    Article  Google Scholar 

  63. J. Colgan, M.S. Pindzola, F. Robicheaux, J. Phys. B, At. Mol. Opt. Phys. 41(12), 121002 (2008)

    Article  Google Scholar 

  64. F. Morales, F. Martín, D.A. Horner, T.N. Rescigno, C.W. McCurdy, J. Phys. B, At. Mol. Opt. Phys. 42(13), 134013 (2009)

    Article  Google Scholar 

  65. X. Guan, K. Bartschat, B.I. Schneider, Phys. Rev. A 82, 041404 (2010)

    Article  Google Scholar 

  66. F. Martín, J. Phys. B, At. Mol. Opt. Phys. 32(16), 197 (1999)

    Article  Google Scholar 

  67. M. Cortés, F. Martín, J. Phys. B, At. Mol. Opt. Phys. 27(23), 5741 (1994)

    Article  Google Scholar 

  68. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Rep. Prog. Phys. 64(12), 1815 (2001)

    Article  CAS  Google Scholar 

  69. A. Palacios, H. Bachau, F. Martín, J. Phys. B, At. Mol. Opt. Phys. 38(6), 99 (2005)

    Article  Google Scholar 

  70. S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc web page (2011). http://www.mcs.anl.gov/petsc

  71. M. Leventhal, R. Robiscoe, K. Lea, Phys. Rev. 158(1), 49–56 (1967)

    Article  CAS  Google Scholar 

  72. S.L. Guberman, J. Chem. Phys. 78, 1404–1413 (1983)

    Article  CAS  Google Scholar 

  73. L. Siebbeles, C.L. Sech, J. Phys. B, At. Mol. Opt. Phys. 27(19), 4443 (1994)

    Article  CAS  Google Scholar 

  74. I. Borges Jr, C.E. Bielschowsky, J. Phys. B, At. Mol. Opt. Phys. 33(9), 1713 (2000)

    Article  CAS  Google Scholar 

  75. I. Borges Jr., C.E. Bielschowsky, Chem. Phys. Lett. 342, 411–416 (2001)

    Article  CAS  Google Scholar 

  76. A. González-Castrillo, J.F. Pérez-Torres, A. Palacios, F. Martín, Theor. Chem. Acc. 128(4–6), 735–742 (2010)

    Google Scholar 

  77. G. Sansone, F. Kelkensberg, F. Morales, J.F. Pérez-Torres, F. Martín, M.J.J. Vrakking, IEEE J. Sel. Top. Quantum Electron. 18, 520 (2012)

    Article  CAS  Google Scholar 

  78. L.A.A. Nikolopoulos, P. Lambropoulos, J. Phys. B 39, 883–893 (2006)

    Article  CAS  Google Scholar 

  79. Y. Furukawa, Y. Nabekawa, T. Okino, S. Saugout, K. Yamanouchi, K. Midorikawa, Phys. Rev. A 82(1), 1–5 (2010)

    Article  Google Scholar 

  80. A. Palacios, H. Bachau, F. Martín, Phys. Rev. A 75(1) (2007)

    Google Scholar 

  81. J.F. Pérez-Torres, J.L. Sanz-Vicario, H. Bachau, F. Martín, J. Phys. B, At. Mol. Opt. Phys. 43(1), 015204 (2010)

    Article  Google Scholar 

  82. I.I. Rabi, Phys. Rev. 51, 652 (1937)

    Article  CAS  Google Scholar 

  83. L. Allen, J.H. Eberly, Optical Resonances and Two-Level Atoms (Wiley, New York, 1975)

    Google Scholar 

  84. M.A. Quesada, A.M.F. Lau, D.H. Parker, D.W. Chandler, Phys. Rev. A 36, 4107–4110 (1987)

    Article  CAS  Google Scholar 

  85. B. Girard, G.O. Sitz, R.N. Zare, N. Billy, J. Vigué, J. Chem. Phys. 97, 26 (1992)

    Article  CAS  Google Scholar 

  86. S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, C. Zhang, Chem. Phys. 100, 6122 (1994)

    CAS  Google Scholar 

  87. J. Qi, G. Lazarov, X. Wang, L. Li, L.M. Narducci, A.M. Lyyra, F.C. Spano, Phys. Rev. Lett. 83, 288–291 (1999)

    Article  CAS  Google Scholar 

  88. J. Qi, F.C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L.M. Narducci, R.W. Field, A.M. Lyyra, Phys. Rev. Lett. 88, 173003 (2002)

    Article  CAS  Google Scholar 

  89. S. Ghosh, J.E. Sharping, D.G. Ouzounov, A.L. Gaeta, Phys. Rev. Lett. 94, 093902 (2005)

    Article  Google Scholar 

  90. E. Ahmed, A. Hansson, P. Qi, T. Kirova, A. Lazoudis, S. Kotochigova, A.M. Lyyra, L. Li, J. Qi, S. Magnier, J. Chem. Phys. 124, 084308 (2006)

    Article  CAS  Google Scholar 

  91. M. Kremer, B. Fischer, B. Feuerstein, V.L.B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 103(21), 213003 (2009)

    Article  Google Scholar 

  92. B. Fischer, M. Kremer, T. Pfeifer, B. Feuerstein, V. Sharma, U. Thumm, C. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 105(22), 1–4 (2010)

    Article  Google Scholar 

  93. E. Charron, A. Giusti-Suzor, F.H. Mies, Phys. Rev. Lett. 75(15), 2815–2818 (1995)

    Article  CAS  Google Scholar 

  94. A. González-Castrillo, A. Palacios, F. Catoire, H. Bachau, F. Martín, J. Phys. Chem. A (2012)

    Google Scholar 

Download references

Acknowledgements

This work was accomplished with an allocation of computer time from Mare Nostrum BSC and CCC-UAM, and was partially supported by the MICINN projects FIS2010-15127, ACI2008-0777 and CSD 2007-00010, the ERA-Chemistry project PIM2010EEC-00751, the European grants MC-ITN CORINF and MC-RG ATTOTREND, the European COST Action CM0702, and the XCHEM Advanced Grant 290853 of the European Research Council. AP and PR acknowledge a Juan de la Cierva post-doctoral Contract from MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palacios, A., Rivière, P., González-Castrillo, A., Martín, F. (2014). XUV Lasers for Ultrafast Electronic Control in H2 . In: de Nalda, R., Bañares, L. (eds) Ultrafast Phenomena in Molecular Sciences. Springer Series in Chemical Physics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-02051-8_2

Download citation

Publish with us

Policies and ethics