Skip to main content

Model for Quantum Confinement in Nanowires and the Application of This Model to the Study of Carrier Mobility in Nanowire FinFETs

  • Chapter
  • First Online:
  • 2482 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

Abstract

FinFETs represent exciting new technology. Nanowire FinFETs are more promising than the bulk-silicon FinFETs. As they have the gate capacitance in closer proximity to the whole of the channel, they control the short-channel effects very well and also suppress the leakage current. Key to the superior performance of these devices is high carrier mobility. The focus of this chapter is the fundamental of this mobility in the framework of the SNM (simple, novel, malleable) model for quantum-confined nanowires. Extensive investigation has been carried out to address the role of quantum confinement and dielectric confinement on mobility enhancement in nanowire FinFETs. Impacts of ionized impurity scattering, acoustic phonon scattering, and dislocation scattering on the carrier mobility have been examined. Calculated results have been compared with available experiments. These results have also been used to suggest possible modifications in the design of nanowire FinFETs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colinge, J.-P.: FinFETs and other multigate transistors. Springer, New York, NY (2007)

    Google Scholar 

  2. Fan, H.J., Werner, P., Zacharias, M.: Small 2, 700 (2006)

    Article  Google Scholar 

  3. Mohammad, S.N.: J. Appl. Phys. 110, 084310 (2011)

    Article  ADS  Google Scholar 

  4. Kotlyar, R., Obradovic, B., Matagne, P., Stettler, M., Giles, M.D.: Appl. Phys. Lett. 84, 5270 (2004)

    Article  ADS  Google Scholar 

  5. Barraud, S., Sarrazin, E., Bournel, A.: Semicond. Sci. Technol. 26, 025001 (2011)

    Article  ADS  Google Scholar 

  6. Wang, J., Polizzi, E., Ghosh, A., Datta, S., Lundstrom, M.S.: Appl. Phys. Lett. 87, 043101 (2005)

    Article  ADS  Google Scholar 

  7. Jena, D., Konor, A.: Phys. Rev. Lett. 98, 136805 (2007)

    Article  ADS  Google Scholar 

  8. Fonoberov, V.A., Balandin, A.A.: Nano Lett. 6, 2442 (2006)

    Article  ADS  Google Scholar 

  9. Sakaki, H.: Jpn. J. Appl. Phys. 19, L735 (1980)

    Article  ADS  Google Scholar 

  10. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: J. Appl. Phys. 104, 063711 (2008)

    Article  ADS  Google Scholar 

  11. Khanal, D.R., Levander, A.X., Yu, K.M., Liliental-Weber, Z., Walukiewicz, W., Grandal, J., Sanchez-Garcıa, M.A., Calleja, E., Wu, J.: J. Appl. Phys. 110, 033705 (2011)

    Article  Google Scholar 

  12. Jena, D., Konor, A.: J. Appl. Phys. 102, 123705 (2007)

    Article  ADS  Google Scholar 

  13. Mohammad, S.N.: Nanotechnology 23, 285707 (2012)

    Article  Google Scholar 

  14. Mohammad, S.N.: J. Chem. Phys. 125, 094705 (2006)

    Article  ADS  Google Scholar 

  15. Mohammad, S.N.: J. Chem. Phys. 127, 244702 (2007)

    Article  ADS  Google Scholar 

  16. Schmidt, M., Kusche, R., Issendorff, V.B., Heberland, H.: Nature 393, 238 (1998)

    Article  ADS  Google Scholar 

  17. Bertsch, G.: Science 277, 1619 (1997)

    Article  Google Scholar 

  18. Jiang, Q., Zhang, Z., Li, J.C.: Acta Mater. 48, 4791 (2000)

    Article  Google Scholar 

  19. Lamber, R., Wetjen, S., Jaeger, N.I.: Phys. Rev. B 51, 10968 (1995)

    Article  ADS  Google Scholar 

  20. Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Science 256, 1425 (1992)

    Article  ADS  Google Scholar 

  21. Janczuk, B., Jcik, W.W., Guindo, M.C., Chibowski, E., Gonzalez, F., Ballero, C.: Mater. Chem. Phys. 37, 64 (1993)

    Article  Google Scholar 

  22. Nanda, K.K., Maisels, A., Kruis, F.E., Fissan, H., Stappert, S.: Phys. Rev. Lett. 91, 106102 (2003)

    Article  ADS  Google Scholar 

  23. Mohammad, S.N.: Adv. Mater. 24, 1262 (2012)

    Article  Google Scholar 

  24. Jiang, Q., Lu, H.M., Zhao, M.: J. Phys. Condens. Matter 16, 521 (2004)

    Article  ADS  Google Scholar 

  25. Mehl, M.J., Papaconstantopoulos, D.A.: Phys. Rev. B 54, 4519 (1996)

    Article  ADS  Google Scholar 

  26. Lindemann, F.A.: Z. Phys. 11, 609 (1910)

    MATH  Google Scholar 

  27. Mohammad, S.N.: J. Appl. Phys. 110, 054311 (2011)

    Article  ADS  Google Scholar 

  28. Coombes, C.J.: J. Phys. F: Metal Phys. 2, 441 (1972)

    Article  ADS  Google Scholar 

  29. Nanda, K.K.: Appl. Phys. Lett. 87, 021909 (2005)

    Article  ADS  Google Scholar 

  30. Zhang, Y., Suenaga, K., Colliex, C., Iijima, S.: Science 281, 973 (1998)

    Article  ADS  Google Scholar 

  31. Mohammad, S.N.: J. Appl. Phys. 107, 114304 (2010)

    Article  ADS  Google Scholar 

  32. Wang, Y., Luo, Z., Li, B., Ho, P.S., Yao, Z., Shi, L., Bryan, E.N., Nemanich, R.J.: J. Appl. Phys. 101, 124310 (2007)

    Article  ADS  Google Scholar 

  33. Ho, G.H., Wong, A.S.W., Wee, A.T.S., Welland, M.E.: Nano Lett. 4, 2023 (2004)

    Article  ADS  Google Scholar 

  34. Cui, L.-F., Ruffo, R., Chan, C.K., Peng, H., Cui, Y.: Nano Lett. 9, 491 (2009)

    Article  ADS  Google Scholar 

  35. Dan, Y., Seo, K., Takei, K., Meza, J.H., Javey, A., Crozier, K.B.: Nano Lett. 11, 2527 (2011)

    Article  ADS  Google Scholar 

  36. Bogart, T. D., Lu, X. and Korgel, B. A.: Dalton Trans. 42, 12675 (2013)

    Google Scholar 

  37. Zhang, Q., Bayliss, S.C.: J. Appl. Phys. 79, 1351 (1996)

    Article  ADS  Google Scholar 

  38. Bruno, M., Palummo, M., Marini, A., Del Sole, R., Ossicini, S.: Phys. Rev. Lett. 98, 036807 (2007)

    Article  ADS  Google Scholar 

  39. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C.: Phys. Rev. Lett. 82, 197 (1999)

    Article  ADS  Google Scholar 

  40. Street, R.A.: Adv. Phys. 30, 593 (1981)

    Article  ADS  Google Scholar 

  41. Ma, D.D.D., Lee, C.S., Au, F.C.K., Tong, S.Y., Lee, S.T.: Science 299, 1874 (2003)

    Article  ADS  Google Scholar 

  42. Nolan, M., O’Callaghan, S., Fagas, G., Greer, J.C., Frauenheim, T.: Nano Lett. 7, 34 (2007)

    Article  ADS  Google Scholar 

  43. Scheel, H., Reich, S., Thomsen, C.: Phys. Status Solidi (b) 242, 2474 (2005)

    Article  ADS  Google Scholar 

  44. Lin, Y.-M., Sun, X., Dresselhaus, M.S.: Phys. Rev. B 62, 4610 (2000)

    Article  ADS  Google Scholar 

  45. Rustagi, S.C., Singh, N., Lim, Y.F., Zhang, G., Wang, S., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: IEEE Electron Devices Lett. 28, 909 (2007)

    Article  ADS  Google Scholar 

  46. Leonard, F., Talin, A.A.: Phys. Rev. Lett. 97, 026804 (2006)

    Article  ADS  Google Scholar 

  47. Park, N.-M., Kim, T.-S., Park, S.-J.: Appl. Phys. Lett. 78, 2575 (2001)

    Article  ADS  Google Scholar 

  48. Wang, W.C., Frietzsche, H.: J. Non Cryst. Solids 97–98, 919 (1987)

    Article  Google Scholar 

  49. Gen, C., Yu, V., Kaznacheev, A., Yunovich, A.E.: Fiz. Tekh. Poluprovodn 25, 1681 (1991)

    Google Scholar 

  50. Gen, C., Yu, V., Kaznacheev, A., Yunovich, A.E.: Sov. Phys. Semicond. 25, 1011 (1991)

    Google Scholar 

  51. Yi, K.S., Trivedi, K., Floresca, H.C., Yuk, H., Hu, W., Kim, M.K.: Nano Lett. 11, 5465 (2011)

    Article  ADS  Google Scholar 

  52. Niquet, Y.M., Lherbier, A., Quang, N.H., Fernández-Serra, M.V., Blasé, X., Delerue, C.: Phys. Rev. B 73, 165319 (2006)

    Article  ADS  Google Scholar 

  53. Boulitrop, F., Dunstain, D.J.: Phys. Rev. B 28, 5923 (1983)

    Article  ADS  Google Scholar 

  54. Searle, T.M., Jackson, W.A.: Philos. Mag. B 60, 237 (1989)

    Article  ADS  Google Scholar 

  55. Giorgis, F., Pirri, C.F., Vinegoni, C., Pavesi, L.: Phys. Rev. B 60, 11572 (1999)

    Article  ADS  Google Scholar 

  56. Yang, C.C., Li, S.: Phys. Rev. B 75, 165413 (2007)

    Article  ADS  Google Scholar 

  57. Liu, D., Zhu, Y.F., Jiang, Q.: J. Phys. Chem. C 113, 10907 (2009)

    Article  Google Scholar 

  58. Naher, U., Bjrnholm, S., Frauendorf, S., Garcias, F., Guet, C.: Phys. Rep. 285, 245 (1997)

    Article  ADS  Google Scholar 

  59. Nanda, K.K., Sahu, S.N., Behera, S.N.: Phys. Rev. A 66, 013208 (2002)

    Article  ADS  Google Scholar 

  60. Rose, J.R., Vary, J.P., Smith, J.R.: Phys. Rev. Lett. 53, 344 (1984)

    Article  ADS  Google Scholar 

  61. Rose, J.R., Smith, J.R., Ferrante, J.: Phys. Rev. B 28, 1835 (1983)

    Article  ADS  Google Scholar 

  62. Qi, W.H., Wang, M.P., Xu, G.Y.: Chem. Phys. Lett. 372, 632 (2004)

    Article  ADS  Google Scholar 

  63. Sun, C.Q., Shi, Y., Li, C.M., Li, S., Yeung, T.C.: Phys. Rev. B 73, 075408 (2006)

    Article  ADS  Google Scholar 

  64. Delerue, C., Allan, G., Lannoo, M.: Phys. Rev. B 48, 11024 (1993)

    Article  ADS  Google Scholar 

  65. Wu, Z., Neaton, J.B., Grossman, J.C.: Phys. Rev. Lett. 100, 246804 (2008)

    Article  ADS  Google Scholar 

  66. Li, S., Wang, G.W.: Appl. Phys. Lett. 95, 073106 (2009)

    Article  ADS  Google Scholar 

  67. Li, M., Li, J.C.: Mater. Lett. 60, 2526 (2006)

    Article  Google Scholar 

  68. Verma, A.S.: Phys. Status Solidi (b) 246, 345 (2009)

    Article  ADS  Google Scholar 

  69. Rotaru, C., Nastase, S., Tomozeiu, N.: Phys. Status Solidi (a) 171, 365 (1999)

    Article  ADS  Google Scholar 

  70. Chen, C.-W., Chen, K.-H., Shen, C.-H., Ganguly, A., Chen, L.-C., Wu, J.-J., Wen, H.-I., Pong, W.-F.: Appl. Phys. Lett. 88, 241905 (2006)

    Article  ADS  Google Scholar 

  71. Robertson, J.: Eur. Phys. J. Appl. Phys. 28, 265 (2004)

    Article  ADS  Google Scholar 

  72. Robertson, J.: Rep. Prog. Phys. 69, 327 (2006)

    Article  ADS  Google Scholar 

  73. Lee, J., Spector, H.N.: J. Appl. Phys. 54, 3921 (1983)

    Article  ADS  Google Scholar 

  74. Salfi, J., Philipose, U., Aouba, S., Nair, S.V., Ruda, H.E.: Appl. Phys. Lett. 90, 032104 (2007)

    Article  ADS  Google Scholar 

  75. Motayed, A., Vaudin, M., Davydov, A.V., Melngailis, J., He, M., Mohammad, S.N.: Appl. Phys. Lett. 90, 043104 (2007)

    Article  ADS  Google Scholar 

  76. Cimpoiasu, E., Stern, E., Cheng, G., Munden, R., Sanders, A., Reed, M.A.: Braz. J. Phys. 36, 824 (2006)

    Article  ADS  Google Scholar 

  77. Nag, B.R.: Electrical transport in compound semiconductors. Springer, New York, NY (1980)

    Book  Google Scholar 

  78. Ramayya, E.B., Valiseska, D., Goodnick, S.M., Knezevic, I.: IEEE Trans. Nanotechnol. 6, 113 (2007)

    Article  ADS  Google Scholar 

  79. Read, W.T.: Philos. Mag. 45, 775 (1954)

    MATH  Google Scholar 

  80. Read, W.T.: Philos. Mag. 46, 111 (1954)

    Google Scholar 

  81. Podor, B.: Phys. Status Solidi 16, K167 (1966)

    Article  ADS  Google Scholar 

  82. Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  83. Koo, S.M., Fujiwara Han, A.J.P., Vogel, E.M., Richter, C.A., Bonevich, J.E.: Nano Lett. 4, 2197 (2004)

    Article  ADS  Google Scholar 

  84. Takagi, S., Koga, J., Toriumi, A.: Jpn. J. Appl. Phys. 37, 1289 (1998)

    Article  ADS  Google Scholar 

  85. Ford, A.C., Ho, J.C., Chueh, Y.L., Tseng, Y.C., Fan, Z., Guo, J., Bokor, J., Javery, A.: Nano Lett. 9, 360 (2009)

    Article  ADS  Google Scholar 

  86. Trivedi, K., Yuk, H., Floresca, H.C., Kim, M.J., Hu, W.: Nano Lett. 11, 1412 (2011)

    Article  ADS  Google Scholar 

  87. Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffer, M., Riess Ohlsson, W.B.J., Goesel, U., Samuelson, L.: Mater. Today 9, 28 (2006)

    Article  Google Scholar 

  88. Khanal, D.R., Yim, J.W.L., Walukiewicz, W., Wu, J.: Nano Lett. 7, 1186 (2007)

    Article  ADS  Google Scholar 

  89. Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Nano Lett. 2, 101 (2002)

    Article  ADS  Google Scholar 

  90. Chang, C.-Y., Chi, G.-C., Wang, W.-M., Chen, L.-C., Chen, K.-H., Ren, F., Pearton, S.J.: Appl. Phys. Lett. 87, 093112 (2005)

    Article  ADS  Google Scholar 

  91. Stern, E., Cheng, G., Cimpoiasu, E., Klie, R., Guthrie, S., Klemic, J., Kretzschmar, I., Steinlauf, E., Turner-Evans, D., Broom-field, E., Hyland, J., Koudelka, R., Boone, T., Young, M., Sanders, A., Munden, R., Lee, T., Routenberg, D., Reed, M.A.: Nanotechnology 16, 2941 (2005)

    Article  ADS  Google Scholar 

  92. Cheng, G., Stern, E., Turner-Evans, D., Reed, M.A.: Appl. Phys. Lett. 87, 253103 (2005)

    Article  ADS  Google Scholar 

  93. Jiang, Y., Liow, T.Y., Singh, N., Tan, L.H., Lo, G.Q., Chan, D.S.H., Kwong, D.L. In: IEEE Symposium on VLSI Technology Digest of Technical Papers, p. 34 (2008)

    Google Scholar 

  94. Jin, S., Fischetti, M.V., Tang, T.W.: J. Appl. Phys. 102, 083715 (2007)

    Article  ADS  Google Scholar 

  95. Neophytou, N., Kosina, H.: Solid State Electron. 70, 81 (2012)

    Article  ADS  Google Scholar 

  96. Persson, M.P., Mera, H., Niques, Y.-M., Delerue, C.: Phys. Rev. B 82, 115318 (2010)

    Article  ADS  Google Scholar 

  97. Koley, G., Cai, Z., Quddus, E.B., Liu, J., Qazi, M., Webb, R.A.: Nanotechnology 22, 295701 (2011)

    Article  Google Scholar 

  98. Murphy-Armando, F., Fagas, G., Greer, J.C.: Nano Lett. 10, 869 (2010)

    Article  ADS  Google Scholar 

  99. Zhang, W., Delerue, C., Niquet, Y.-M., Allan, G., Wang, E.: Phys. Rev. B 82, 115319 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noor Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, A., Ganji, S., Mohammad, S.N. (2013). Model for Quantum Confinement in Nanowires and the Application of This Model to the Study of Carrier Mobility in Nanowire FinFETs. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_2

Download citation

Publish with us

Policies and ethics