Skip to main content

Enhanced Quantum Effects in Room-Temperature Coulomb Blockade Devices Based on Ultrascaled finFET Structure

  • Chapter
  • First Online:
Toward Quantum FinFET

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

Abstract

The availability of an ultrasmall dot-based single-electron device could provide new operating regimes where Coulomb blockade and quantum confinement are two distinct effects, competing to control electron transport. Most recently, we have made a successful implementation of CMOS-compatible room-temperature single-electron transistor by ultrascaling a finFET structure down to an ultimate limiting form, resulting in the reliable formation of a sub-5-nm silicon Coulomb island. The charge stability of the device features, for the first time, three and a half clear multiple Coulomb diamonds at 300 K, showing high PVCRs. The device dot size is sufficiently small that Coulomb blockade and other quantum effects persist up to room temperature. The charge stability at 300 K with additional fine structures of low-temperature Coulomb peaks are successfully modeled by including the interplay between Coulomb interaction, valley splitting, and strong quantum confinement that become enhanced in ultrasmall scale. This supports that for a sub-5 nm device even small number of electron occupation ensures that quantum many-body interactions strongly influence the room-temperature electron transport characteristics. Under this condition, quantum effect can be used as an additional state variable to provide another multi-switching functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Averin, D.V., Likarev, K.K.: In: Grabert, H., Devoret, M.H. (eds.) Single charge tunneling, p. 311. Plenum, New York (1992)

    Google Scholar 

  2. Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., Seki, K.: IEEE Trans. Electron Dev. 41, 1628 (1994)

    Article  ADS  Google Scholar 

  3. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., Chan, K.: Appl. Phys. Lett. 68, 1377 (1996)

    Article  ADS  Google Scholar 

  4. Guo, L., Leobandung, E., Chou, S.Y.: Science 275, 649 (1997)

    Article  Google Scholar 

  5. Akazawa, M., Kanami, K., Yamada, T., Amemiya, Y.: IEICE Trans. Electron. E 82-C(9), 1607 (1999)

    Google Scholar 

  6. Takahashi, Y., Fujiwara, A., Yamazaki, K., Namatsu, H., Kurihara, K., Murase, K.: Appl. Phys. Lett. 76(5), 637–639 (2000)

    Article  ADS  Google Scholar 

  7. Inokawa, H., Fujiwara, A., Takahashi, Y.: IEEE Trans. Electron Dev. 50, 462 (2003)

    Article  ADS  Google Scholar 

  8. Degawa, K., Aoki, T., Higuchi, T., Inokawa, H., Takahashi, Y.: IEICE Trans. Electron. E 87-C(11), 1827 (2004)

    Google Scholar 

  9. Mahapatra, S., Ionescu, A.M.: IEEE Trans. Nanotechnol. 4(6), 705 (2005)

    Article  ADS  Google Scholar 

  10. Lee, C.K., Kim, S.J., Shin, S.J., Choi, J.B., Takahashi, Y.: Appl. Phys. Lett. 92, 093101 (2008)

    Article  ADS  Google Scholar 

  11. Kim, S.J., Lee, C.K., Chung, R.S., Park, E.S., Shin, S.J., Choi, J.B., Yu, Y.S., Kim, N.S., Lee, H.G., Park, K.H.: IEEE Trans. Electron Dev. 56, 1048 (2009)

    Article  ADS  Google Scholar 

  12. Kim, S.J., Lee, J.J., Kang, H.J., Choi, J.B., Yu, Y.-S., Takahashi, Y., Hasko, D.G.: One Electron-based Smallest Flexible Logic Cell. Appl. Phys. Lett. 101, 183101 (2012)

    Article  ADS  Google Scholar 

  13. Takahashi, Y., Naease, M., Namatsu, H., Kurihara, K., Iwdate, K., NakajiGa, Y., Horiguchi, S., Murase, K., Tabe, M.: Electron. Lett. 31, 136 (1995)

    Article  Google Scholar 

  14. Leobandung, E., Guo, L., Wang, Y., Chou, Y.S.: Appl. Phys. Lett. 67, 938 (1995)

    Article  ADS  Google Scholar 

  15. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Science 278, 252 (1997)

    Article  Google Scholar 

  16. Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K., Murase, K.: IEEE Trans. Electron Dev. 47, 147 (2000)

    Article  ADS  Google Scholar 

  17. Tan, Y.T., Kamiya, T., Durrani, Z.A.K., Ahmed, H.: Room temperature nanocrystalline silicon single-electron transistors. J. Appl. Phys. 94, 633–637 (2003)

    Article  ADS  Google Scholar 

  18. Saitoh, M., Hiramoto, T.: Appl. Phys. Lett. 84, 3172 (2004)

    Article  ADS  Google Scholar 

  19. Li, P.W., Kuo, D.M.T., Liao, W.M., Lai, W.T.: Appl. Phys. Lett. 88, 213117 (2006)

    Article  ADS  Google Scholar 

  20. Kimura, Y., Itoh, K., Yamaguchi, R., Ishibashi, K., Itaya, K., Niwano, M.: Appl. Phys. Lett. 90, 093119 (2007)

    Article  ADS  Google Scholar 

  21. Shin, S.J., Jung, C.S., Park, B.J., Yoon, T.K., Lee, J.J., Kim, S.J., Choi, J.B., Takahashi, Y., Hasko, D.G.: Appl. Phys. Lett. 97, 103101 (2010); patent US 8158538; NPG Asia Materials Featured Highlight, “Transistors: One at a time” (8 Nov 2010); doi:10.1038/asiamat.2010.176

    Google Scholar 

  22. Shin, S.J., Lee, J.J., Kang, H.J., Choi, J.B., Yang, S.-R.E., Takahashi, Y., Hasko, D.G.: Nano Lett. 11(4), 1591 (2011)

    Article  ADS  Google Scholar 

  23. Mol, J.A., Verduijn, J., Levine, R.D., Remacle, F., Rogge, S.: Proc. Natl. Acad. Sci. USA 108, 13969 (2011)

    Article  ADS  Google Scholar 

  24. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Bokor, J., Hu, C.: IEEE Trans. Electron Dev. 47, 2320 (2000)

    Article  ADS  Google Scholar 

  25. DiCarlo, L., Lynch, H.J., Johnson, A.C., Childress, L.I., Crockett, K., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Phys. Rev. Lett. 92, 226801 (2004)

    Article  ADS  Google Scholar 

  26. Hu, Y., Churchill, H.O.H., Reilly, D.J., Xiang, J., Lieber, C.M., Marcus, C.M.: Nat. Nanotechnol. 2, 622 (2007)

    Article  ADS  Google Scholar 

  27. Nordberg, E.P., Stalford, H.L., Young, R., Ten Eyck, G.A., Eng, K., Tracy, L.A., Childs, K.D., Wendt, J.R., Grubbs, R.K., Stevens, J., Lilly, M.P., Eriksson, M.A., Carroll, M.S.: Appl. Phys. Lett. 95, 202102 (2009)

    Article  ADS  Google Scholar 

  28. Brenning, H., Kafanov, S., Duty, T., Kubatkin, S., Delsing, P.: J. Appl. Phys. 100, 114321 (2006)

    Article  ADS  Google Scholar 

  29. Angus, S.J., Ferguson, A.J., Dzurak, A.S., Clark, R.G.: Appl. Phys. Lett. 92, 112103 (2008)

    Article  ADS  Google Scholar 

  30. Podd, G.J., Angus, S.J., Williams, D.A., Ferguson, A.: J. Appl. Phys. Lett. 96, 082104 (2010)

    Article  ADS  Google Scholar 

  31. Villis, B.J., Orlov, A.O., Jehl, X., Snider, G.L., Fay, P., Sanquer, M.: Defect detection in nano-scale transistors based on radio-frequency reflectometry. Appl. Phys. Lett. 99, 152106 (2011)

    Article  ADS  Google Scholar 

  32. Averin, D.V., Likharev, K.K.: Mesoscopic phenomena in solids. North-Holland, Amsterdam (1991)

    Google Scholar 

  33. Kastner, M.A.: Rev. Mod. Phys. 64, 849 (1992)

    Article  ADS  Google Scholar 

  34. Van Houten, H., Beenakker, C.W., Staring, A.A.M.: Single Charge Tunneling. Plenum, New York (1992)

    Google Scholar 

  35. Kouwenhoven, L.P., Austing, D.G., Tarucha, S.: Rep. Pro. Phys. 64, 701 (2001)

    Article  ADS  Google Scholar 

  36. Van der Wiel, W.G., De Franceschi, S., Elzerman, J.M., Fujisawa, T., Tarucha, S., Kouwenhoven, L.P.: Rev. Mod. Phys. 75, 1 (2003)

    Article  Google Scholar 

  37. McEuen, P.L., Foxman, E.B., Kinaret, J., Meirav, U., Kastner, M.A., Wingreen, N.S., Wind, S.J.: Phys. Rev. B 45, 11419 (1992)

    Article  ADS  Google Scholar 

  38. Tarucha, S., Austing, D.G., Honda, T., van der Hage, R.J., Kouwenhoven, L.P.: Phys. Rev. Lett. 77, 3613 (1996)

    Article  ADS  Google Scholar 

  39. Kouwenhoven, L.P., Oosterkamp, T.H., Danoesastro, M.W.S., Eto, M., Austing, D.G., Honda, T., Tarucha, S.: Science 278, 1788 (1997)

    Article  ADS  Google Scholar 

  40. Simmel, F., Abusch-Magder, D., Wharam, D.A., Kastner, M.A., Kotthaus, J.P.: Phys. Rev. B 59, 10441 (1999)

    Article  ADS  Google Scholar 

  41. Khoury, M., Rack, M.J., Gunther, A., Ferry, D.K.: Appl. Phys. Lett. 74, 1576 (1999)

    Article  ADS  Google Scholar 

  42. Lee, S.D., Park, K.S., Park, J.W., Choi, J.B., Yang, S.-R.E., Yoo, K.-H., Kim, J., Park, S.I., Kim, K.T.: Phys. Rev. B 62, R7735 (2000)

    Article  ADS  Google Scholar 

  43. Rokhinson, L.P., Guo, L.J., Chou, S.Y., Tsui, D.C.: Phys. Rev. B 63, 035321 (2001)

    Article  ADS  Google Scholar 

  44. Johnson, A.T., Kouwenhoven, L.P., de Jong, W., van der Vaart, N.C., Harmans, C.J.P.M., Foxon, C.T.: Phys. Rev. Lett. 69, 1592 (1992)

    Article  ADS  Google Scholar 

  45. Lee, S.D., Shin, S.J., Choi, S.J., Lee, J.J., Choi, J.B., Park, S., Yang, S.-R.E., Lee, S.J., Zyung, T.H.: Appl. Phys. Lett. 89, 023111 (2006)

    Article  ADS  Google Scholar 

  46. Neophytou, N., Paul, A., Lundstorm, M.S., Klimeck, G.: IEEE Trans. Electron Dev. 55, 1286 (2008)

    Article  ADS  Google Scholar 

  47. Maegawa, T., Yamauchi, T., Hara, T., Tsuchiya, H., Ogawa, M.: IEEE Trans. Electron Dev. 56, 553 (2009)

    Article  ADS  Google Scholar 

  48. Goswami, S., Slinker, K.A., Friesen, M., McGuire, L.M., Truitt, J.L., Tahan, C., Klein, L.J., Chu, J.O., Mooney, P.M., Van der weide, D.W., Joynt, R., Coppersmith, S.N., Eriksson, M.A.: Nat. Phys. 3, 41 (2007)

    Article  Google Scholar 

  49. Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Appl. Phys. Lett. 89, 202106 (2006)

    Article  ADS  Google Scholar 

  50. Fazekas, P.: Lecture notes on electron correlation and magnetism. World Scientific, Singapore (1963)

    Google Scholar 

  51. Anderson, P.W.: Concepts in solids. Benjamin, London (1963)

    Google Scholar 

  52. Park, S., Yang, S.-R.E.: Phys. Rev. B 72, 125410 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation through the Frontier 21 National Program for Tera-level NanoDevices, Global Partnership Research Program with University of Cambridge, and in part by a research grant of the Chungbuk National University in 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung B. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choi, J.B. (2013). Enhanced Quantum Effects in Room-Temperature Coulomb Blockade Devices Based on Ultrascaled finFET Structure. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_12

Download citation

Publish with us

Policies and ethics