Skip to main content

Towards Drain Extended FinFETs for SoC Applications

  • Chapter
  • First Online:
Toward Quantum FinFET

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

Abstract

This chapter highlights the importance of drain extended class of high voltage MOS devices for advanced implementations of System on Chip (SoC) applications using FinFET or other tri-gate technologies. The working principle of drain extended MOS device is explained and an understanding is built in order to bridge existing drain extended planar devices and future drain extended, FinFETs or tri-gate devices. In this connection, a recently proposed Drain extended FinFET device is discussed for high voltage as well as high speed applications. This shows a better RON vs. V BD trade-off when compared to a conventional device option. Finally, device design and optimization guidelines have been discussed for the new drain extended FinFET device.

Mayank Shrivastava was formerly with Intel Corp., Mobile and Communications Group, Munich, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulde, M., Schmitt-Landsiedel, D., Knoblinger, G.: Analog and RF design issues in high-k & multi-gate CMOS technologies. In: International electron devices meeting, p. 447, Dec 2009

    Google Scholar 

  2. Borkar, S.: Design challenges for 22nm CMOS and beyond. In: International electron devices meeting, p. 446, Dec 2009

    Google Scholar 

  3. Jan, C.-H., Agostinelli, M., Buehler, M., Chen, Z.-P., Choi, S.-J., Curello, G., Deshpande, H., Gannavaram, S., Hafez, W., Jalan, U., Kang, M., Kolar, P., Komeyli, K., Lake, A., Lazo, N., Lee, S.-H., Leo, T., Lin, J., Lindert, N., Ma, S., McGill, L., Meining, C., Paliwal, A., Park, J., Phoa, K., Post, I., Pradhan, N., Prince, M., Rahman, A., Rizk, J., Rockford, L., Sacks, G., Tashiro, H., Tsai, C., Vandervoorn, P., Xu, J., Yang, L., Yeh, J.-Y., Yip, J., Zhang, K., Bai, P.: A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications. In: International electron devices meeting, pp. 647–650, Dec 2009

    Google Scholar 

  4. International Technology Roadmap for Semiconductors (ITRS) (2009)

    Google Scholar 

  5. Shrivastava, M., et al.: Toward system on chip (SoC) development using FinFET technology: challenges, solutions, process co-development & optimization guidelines. IEEE Trans. Electron Dev. 58(6), 1597–1607 (2011)

    Article  ADS  Google Scholar 

  6. Various Publishers: Intel increases transistor speed by building upward, May 2011

    Google Scholar 

  7. Yeh, C.C., et al.: A low operating power FinFET transistor module featuring scaled gate stack and strain engineering for 32/28nm SoC technology. In: IEEE international electron devices meeting, pp. 772–775, Dec 2010

    Google Scholar 

  8. Shrivastava, M., et al.: Part I: mixed-signal performance of various high-voltage drain-extended MOS devices. IEEE Trans. Electron Dev. 57(2), 448–457 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Sigg, H.J., Vendelin, G.D., Cauge, T.P., Kocsis, J.: D-MOS transistor for microwave applications. IEEE Trans. Electron Dev. 19(1), 45–53 (1972)

    Article  Google Scholar 

  10. Wickstrom, R.A.: US Patent 4,070,690

    Google Scholar 

  11. Jambotkar, C.G., et al.: US Patent 4,145,700

    Google Scholar 

  12. Kirk, C.T.: A theory of transistor cutoff frequency (fT) falloff at high current densities. IEEE Trans. Electron Dev. 9(9), 164–174 (1962)

    Article  ADS  Google Scholar 

  13. Pendharkar, S., Hower, P., Steinhoff, R., Brodsky, J., Devore, J., Grose, B.: Using two-dimensional filament modeling to predict LDMOS and SCR-LDMOS behavior under high current ESD conditions. In: IEEE ISPSD 2001, pp. 161–164, June 2001

    Google Scholar 

  14. Wang, L., Wang, J., Gao, C., Hu, J., Li, P., Li, W., Yang, S.H.Y.: Physical description of quasi-saturation and impact-ionization effects in high-voltage drain-extended MOSFETs. IEEE Trans. Electron Dev. 56(3), 492–498 (2009)

    Article  ADS  Google Scholar 

  15. Shrivastava, M., Gossner, H.: A review on the ESD robustness of drain extended MOS devices. IEEE Trans. Device Mater. Reliab. 12(4), 615–625 (2012)

    Article  Google Scholar 

  16. Hisamoto, D., Lee, W.-C., Kedzierski, J., Bokor, J., Hu, C.: FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47(12), 2320–2325 (2000)

    Article  ADS  Google Scholar 

  17. Park, T.-S., Choi, S., Lee, D.-H., Chung, U.-I., Moon, J.T., Yoon, E., Lee, J.-H.: Body-tied triple-gate NMOSFET fabrication using bulk Si wafer. Solid State Electron. 49(3), 377–383 (2005)

    Article  ADS  Google Scholar 

  18. Manoj, C.R., Nagpal, M., Varghese, D., Ramgopal Rao, V.: Device design and optimization considerations for bulk FinFETs. IEEE Trans. Electron Dev. 55(2), 609–615 (2008)

    Article  ADS  Google Scholar 

  19. Kanemura, T., Izumida, T., Aoki, N., Kondo, M., Ito, S., Enda, T., Okano, K., Kawasaki, H., Yagishita, A., Kaneko, A., Inaba, S., Nakamura, M., Ishimaru, K., Suguro, K., Eguchi, K., Ishiuchi, H.: Improvement of drive current in bulk-FinFET using full 3D process/device simulations. In: IEEE SISPAD 2006, pp. 131–134, Sept 2006

    Google Scholar 

  20. Sachid, A.B.., Francis, R., Baghini, M.S., Sharma, D.K., Bach, K.-H., Mahnkopf, R., Rao, V.R.: Sub-20 nm gate length FinFET design: can high-κ spacers make a difference? In: IEDM technical digest, pp. 1–4, Dec 2008

    Google Scholar 

  21. Shrivastava, M., Gossner, H., Ramgopal Rao, V.: A novel drain extended FinFET device for high voltage high speed applications. IEEE Electron Device Lett. 33(10), 1432–1434 (2012)

    Article  ADS  Google Scholar 

  22. Sharbati, S., Fathipour, M.: Investigation of vertical scaling on breakdown voltage and presentation of analytical model for electric field distribution in SOI RESURF LDMOSFET. In: International semiconductor device research symposium, pp. 1–2, 9–11 (2009)

    Google Scholar 

  23. Merchant, S., et al.: Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors. In: International symposium on power semiconductor devices and ICs, pp. 124–128, May 1993

    Google Scholar 

  24. Choi, Y.-K., King, T.-J., Hu, C.: A spacer patterning technology for nanoscale CMOS. IEEE Trans. Electron Dev. 49(3), 436–441 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shrivastava, M., Gossner, H., Rao, V.R. (2013). Towards Drain Extended FinFETs for SoC Applications. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_10

Download citation

Publish with us

Policies and ethics