Skip to main content

Thermoelectric Properties of p-Type Skutterudite Nanocomposites

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

Skutterudite is a new family of compounds identified to be a promising candidate for thermoelectric applications. Since the early 1990s, skutterudite-based materials have undergone substantial technological development, making its way to the next generation of thermoelectric devices for power generation and waste heat recovery. Nanostructuring is one approach that could enable significant improvements in thermoelectric performance by reducing the thermal conductivity while maintaining the electronic properties. In this chapter, we present progress towards realizing the potential of bulk skutterudites utilizing low dimensionality and nanostructures with an emphasis on p-type skutterudites. We summarized the synthetic approaches used to create skutterudite nanocomposites, namely, ball milling, melt spinning, in situ formation, high-pressure torsion, and solvothermal and hydrothermal synthesis. The effect of nanostructuring on the thermal and electron transport is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Androulakis, J., Hsu, K.F., Pcionek, R., Kong, H., Uher, C., Dangelo, J.J., Downey, A., Hogan, T., Kanatzidis, M.G.: Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)(m)SbTe2+m. Adv. Mater. 18(9), 1170 (2006)

    Article  Google Scholar 

  2. Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659), 818–821 (2004)

    Article  Google Scholar 

  3. Li, H., Tang, X., Zhang, Q., Uher, C.: Rapid preparation method of bulk nanostructured Yb0.3Co 4Sb12+y compounds and their improved thermoelectric performance. Appl. Phys. Lett. 93(Compendex), 252109 (2008)

    Article  Google Scholar 

  4. Li, H., Tang, X.F., Zhang, Q.J., Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94(10), 102114 (2009)

    Article  Google Scholar 

  5. Shi, X., Kong, H., Li, C.P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L., Zhang, W.: Low thermal conductivity and high thermoelectric figure of merit in n-type Bax Yby Co4 Sb12 double-filled skutterudites. Appl. Phys. Lett. 92(18), 182101 (2008)

    Article  Google Scholar 

  6. Uher, C., Shi, X., Kong, H.: Enhanced thermoelectric figure of merit in BaxYb yCo4Sb12 Skutterudites. In: Boston, MA, United States 2008. Materials Research Society Symposium Proceedings, pp. 191–196. Materials Research Society

    Google Scholar 

  7. Bai, S.Q., Pei, Y.Z., Chen, L.D., Zhang, W.Q., Zhao, X.Y., Yang, J.: Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57(11), 3135–3139 (2009)

    Article  Google Scholar 

  8. Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., Yang, J.H.: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95(4), 042101 (2009)

    Article  Google Scholar 

  9. Shi, X., Yang, J., Salvador, J.R., Chi, M., Cho, J.Y., Wang, H., Bai, S., Yang, J., Zhang, W., Chen, L.: Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133((Compendex)), 7837–7846 (2011)

    Article  Google Scholar 

  10. Xiong, Z., Chen, X.H., Huang, X.Y., Bai, S.Q., Chen, L.D.: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58(11), 3995–4002 (2010)

    Article  Google Scholar 

  11. Xie, W.J., Tang, X.F., Yan, Y.G., Zhang, Q.J., Tritt, T.M.: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94(10) (2009)

    Google Scholar 

  12. Biswas, K., He, J.Q., Blum, I.D., Wu, C.I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012)

    Article  Google Scholar 

  13. Morelli, D.T., Meisner, G.P.: Low-temperature properties of the filled skutterudite Cefe4sb12. J. Appl. Phys. 77(8), 3777–3781 (1995)

    Article  Google Scholar 

  14. Caillat, T., Borshchevsky, A., Fleurial, J.P.: Investigations of several new advanced thermoelectric materials at the jet propulsion lab. In: Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, August 8, 1993–August 13, 1993, Atlanta, GA, USA 1993. Proceedings of the Intersociety Energy Conversion Engineering Conference, pp. 245–248. Published by SAE

    Google Scholar 

  15. Yang, J.H., Caillat, T.: Thermoelectric materials for space and automotive power generation. MRS Bulletin 31(3), 224–229 (2006)

    Article  Google Scholar 

  16. Sakamoto, J.S., Schock, H., Caillat, T., Fleurial, J.P., Maloney, R., Lyle, M., Ruckle, T., Timm, E., Zhang, L.: Skutterudite-based thermoelectric technology for waste heat recovery: progress towards a 1 kW generator. Sci. Adv. Mater. 3(4), 621–632 (2011)

    Article  Google Scholar 

  17. Rowe, D.M.: Thermoelectrics Handbook Macro to Nano. CRC (2005-12-09)

    Google Scholar 

  18. Caillat, T., Borshchevsky, A., Fleurial, J.P.: Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80(8), 4442–4449 (1996)

    Article  Google Scholar 

  19. Slack, G.A., Tsoukala, V.G.: Some properties of semiconducting Irsb3. J. Appl. Phys. 76(3), 1665–1671 (1994)

    Article  Google Scholar 

  20. Chen, B.X., Xu, J.H., Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J.P., Caillat, T., Borshchevsky, A.: Low-temperature transport properties of the filled skutterudites CeFe4-xCoxSb12. Phys. Rev. B 55(3), 1476–1480 (1997)

    Article  Google Scholar 

  21. Braun, D.J., Jeitschko, W.: Preparation and structural investigations of anti-monides with the Lafe4p12 structure. J. Less. Common. Met. 72(1), 147–156 (1980)

    Article  Google Scholar 

  22. Braun, D.J., Jeitschko, W.: Ternary arsenides with Lafe4p12-type structure. J. Solid. State. Chem. 32(3), 357–363 (1980)

    Article  Google Scholar 

  23. Jeitschko, W., Braun, D.: Lafe4p12 with filled Coas3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Crystallogr. B, Struct. Sci. 33, 3401–3406 (1977)

    Article  Google Scholar 

  24. Rowe, D.M.: CRC handbook of thermoelectrics. CRC Press, Boca Raton, London (1995)

    Book  Google Scholar 

  25. Sales, B.C., Mandrus, D., Williams, R.K.: Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272(5266), 1325–1328 (1996)

    Article  Google Scholar 

  26. Meisner, G.P., Morelli, D.T., Hu, S., Yang, J., Uher, C.: Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80(16), 3551–3554 (1998)

    Article  Google Scholar 

  27. Shi, X., Zhang, W., Chen, L.D., Yang, J., Uher, C.: Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 75(23) (2007)

    Google Scholar 

  28. Shi, X., Zhang, W., Chen, L.D., Yang, J.: Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Phys. Rev. Lett. 95(18) (2005)

    Google Scholar 

  29. Zhou, C., Morelli, D., Zhou, X., Wang, G., Uher, C.: Thermoelectric properties of P-type Yb-filled skutterudite YbxFeyCo4-ySb12. Intermetallics 19(10), 1390–1393 (2011)

    Article  Google Scholar 

  30. Nolas, G.S., Kaeser, M., Littleton, R.T., Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77(12), 1855–1857 (2000)

    Article  Google Scholar 

  31. Bauer, E., Galatanu, A., Michor, H., Hilscher, G., Rogl, P., Boulet, P., Noel, H.: Physical properties of skutterudites YbxM4Sb12, M = Fe, Co, Rh, Ir. Eur. Phys. J. B 14(3), 483–493 (2000)

    Article  Google Scholar 

  32. Morelli, D.T., Meisner, G.P., Chen, B.X., Hu, S.Q., Uher, C.: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56(12), 7376–7383 (1997)

    Article  Google Scholar 

  33. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.-P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007)

    Article  Google Scholar 

  34. Yang, R.G., Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69(19) (2004)

    Google Scholar 

  35. Joshi, G., Lee, H., Lan, Y.C., Wang, X.W., Zhu, G.H., Wang, D.Z., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.F.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8(12), 4670–4674 (2008)

    Article  Google Scholar 

  36. Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X.A., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., Ren, Z.F.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008)

    Article  Google Scholar 

  37. MacDonald, D.K.C.: Thermoelectricity: an introduction to the principles. John Wiley & Sons, Inc. (1961)

    Google Scholar 

  38. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53(16), 10493–10496 (1996)

    Article  Google Scholar 

  39. Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25(7), 1121–1127 (1996)

    Article  Google Scholar 

  40. Koga, T., Cronin, S.B., Dresselhaus, M.S., Liu, J.L., Wang, K.L.: Experimental proof-of-principle investigation of enhanced Z(3D)T in (001) oriented Si/Ge superlattices. Appl. Phys. Lett. 77(10), 1490–1492 (2000)

    Article  Google Scholar 

  41. Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229–2232 (2002)

    Article  Google Scholar 

  42. Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Article  Google Scholar 

  43. Thiagarajan, S.J., Jovovic, V., Heremans, J.P.: On the enhancement of the figure of merit in bulk nanocomposites. Phys. Status Solidi. Rapid. Res. Lett. 1(6), 256–258 (2007)

    Article  Google Scholar 

  44. Goldsmid, H.J.: Applications of thermoelectricity. John Wiley & Sons Inc., New York (1960)

    Google Scholar 

  45. Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70(11) (2004)

    Google Scholar 

  46. Suryanarayana, C.: Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2001)

    Article  Google Scholar 

  47. Recknagel, C., Reinfried, N., Hohn, P., Schnelle, W., Rosner, H., Grin, Y., Leithe-Jasper, A.: Application of spark plasma sintering to the fabrication of binary and ternary skutterudites. Sci. Tech. Adv. Mater. 8(5), 357–363 (2007)

    Article  Google Scholar 

  48. Liu, W.S., Zhang, B.P., Li, J.F., Zhao, L.D.: Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering. J. Phys. Appl. Phys. 40(2), 566–572 (2007)

    Article  Google Scholar 

  49. Bao, S.Q., Yang, J.Y., Song, X.L., Peng, J.Y., Zhu, W., Fan, X.A., Duan, X.K.: Preparation of La-filled skutterudites by mechanical alloying and hot pressing and their thermal conductivities. Mater. Sci. Eng. 438, 186–189 (2006)

    Article  Google Scholar 

  50. Yang, J.Y., Chen, Y.H., Zhu, W., Bao, S.Q., Peng, J.Y., Fan, X.: Effect of sintering temperature on formation and thermoelectric properties of La0.4Ni0.4Co3.6Sb12 skutterudite by mechanical alloying and hot pressing. J. Phys. Appl. Phys. 38(21), 3966–3969 (2005)

    Article  Google Scholar 

  51. Liu, K.G., Xiang, D., Zhang, J.X.: Rapid synthesis of CoSb3 by MA-SPS and its thermoelectric properties. Rare Metals 24(3), 257–260 (2005)

    Google Scholar 

  52. Yang, L., Wu, J.S., Zhang, L.T.: Thermoelectric properties of some skutterudite compounds with different grain size. J. Alloys Compd. 375(1–2), 114–119 (2004)

    Article  Google Scholar 

  53. Nakagawa, H., Tanaka, H., Kasama, A., Anno, H., Matsubara, K.: Grain size effects on thermoelectric properties of hot-pressed CoSb3. In: Proceedings of the 1997 16th International Conference on Thermoelectrics, ICT’97, August 26, 1997–August 29, 1997, Dresden, Ger 1997. International Conference on Thermoelectrics, ICT, Proceedings, pp. 351–355. IEEE

    Google Scholar 

  54. Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P.: Thermoelectric properties of Yb(0.15)Co(4)Sb(12) based nanocomposites with CoSb(3) nano-inclusion. J. Phys. Appl. Phys. 41(20) (2008)

    Google Scholar 

  55. Alboni, P.N., Ji, X., He, J., Gothard, N., Tritt, T.M.: Thermoelectric properties of La(0.9)CoFe(3)Sb(12)-CoSb(3) skutterudite nanocomposites. J. Appl. Phys. 103(11) (2008)

    Google Scholar 

  56. Shi, X., Chen, L.D., Bai, S.Q., Huang, X.Y., Zhao, X.Y., Yao, Q., Uher, C.: Influence of fullerene dispersion on high temperature thermoelectric properties of Ba(y)Co(4)Sb(12)-based composites. J. Appl. Phys. 102(10) (2007)

    Google Scholar 

  57. Itoh, T., Ishikawa, K., Okada, A.: Effect of fullerene addition on thermoelectric properties of n-type skutterudite compound. J. Mater. Res. 22(1), 249–253 (2007)

    Article  Google Scholar 

  58. He, Z.M., Stiewe, C., Platzek, D., Karpinski, G., Muller, E., Li, S.H., Toprak, M., Muhammed, M.: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101(4) (2007)

    Google Scholar 

  59. Shi, X., Chen, L., Yang, J., Meisner, G.P.: Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering. Appl. Phys. Lett. 84(13), 2301–2303 (2004)

    Article  Google Scholar 

  60. Katsuyama, S., Kanayama, Y., Ito, M., Majima, K., Nagai, H.: Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J. Appl. Phys. 88(6), 3484–3489 (2000)

    Article  Google Scholar 

  61. Zhang, L., Grytsiv, A., Kerber, M., Rogl, P., Bauer, E., Zehetbauer, M.J., Wosik, J., Nauer, G.E.: MmFe(4)Sb(12)- and CoSb3-based nano-skutterudites prepared by ball milling: kinetics of formation and transport properties. J. Alloys Compd. 481(1–2), 106–115 (2009)

    Article  Google Scholar 

  62. Abdellaoui, M., Gaffet, E.: The physics of mechanical alloying in a planetary ball mill—mathematical treatment. Acta Metall. Mater. 43(3), 1087–1098 (1995)

    Article  Google Scholar 

  63. Gerda Rogl, M.Z., Kerber, M., Rogl, P., Bauer, E.: Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. Mater. Sci. Forum 667–669, 1089–1094 (2011)

    Google Scholar 

  64. Herbst, J.F., Meyer, M.S., Pinkerton, F.E.: Magnetic hardening of Ce2Fe14B. J. Appl. Phys. 111(7) (2012)

    Google Scholar 

  65. Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E.: High-energy product ND-FE-B permanent-magnets. Appl. Phys. Lett. 44(1), 148–149 (1984)

    Article  Google Scholar 

  66. Cahn, R.W.: Physical metallurgy, 3rd edn. Elsevier Science Publishers B.V. (1983)

    Google Scholar 

  67. Li, H., Tang, X., Su, X., Zhang, Q., Uher, C.: Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. Appl. Phys. 42(14) (2009)

    Google Scholar 

  68. Li, H., Tang, X., Su, X., Zhang, Q.: Preparation and thermoelectric properties of high-performance Sb additional Yb(0.2)Co(4)Sb(12+y) bulk materials with nanostructure. Appl. Phys. Lett. 92(20) (2008)

    Google Scholar 

  69. Zhou, C., Sakamoto, J., Morelli, D., Zhou, X., Wang, G., Uher, C.: Thermoelectric properties of Co[sub 0.9]Fe[sub 0.1]Sb[sub 3]-based skutterudite nanocomposites with FeSb[sub 2] nanoinclusions. J. Appl. Phys. 109(6), 063722 (2011)

    Article  Google Scholar 

  70. Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Bai, S.Q., Pei, Y.Z., Li, X.Y., Goto, T.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89(9), 092121 (2006)

    Article  Google Scholar 

  71. Zhou, C., Sakamoto, J., Morelli, D.: High-temperature thermoelectric properties of p-Type Yb-filled skutterudite nanocomposites with FeSb2 nanoinclusions. J. Electron. Mater. 41(6), 1030–1035 (2012)

    Article  Google Scholar 

  72. Rogl, G., Setman, D., Schafler, E., Horky, J., Kerber, M., Zehetbauer, M., Falmbigl, M., Rogl, P., Royanian, E., Bauer, E.: High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 60(5), 2146–2157 (2012)

    Article  Google Scholar 

  73. Zhang, L., Grytsiv, A., Bonarski, B., Kerber, M., Setman, D., Schafler, E., Rogl, P., Bauer, E., Hilscher, G., Zehetbauer, M.: Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12. J. Alloys Compd. 494(1–2), 78–83 (2010)

    Article  Google Scholar 

  74. Valiev, R.Z., Kaibyshev, O.A., Kuznetsov, R.I., Musalimov, R.S., Tsenev, N.K.: The low-temperature superplasticity of metallic materials. Doklady Akademii Nauk Sssr 301(4), 864 (1988)

    Google Scholar 

  75. Zehetbauer, M.J., Kohout, J., Schafler, E., Sachslehner, F., Dubravina, A.: Plastic deformation of nickel under high hydrostatic pressure. J. Alloys Compd. 378(1–2), 329–334 (2004)

    Article  Google Scholar 

  76. Zehetbauer, M.J., Stuwe, H.P., Vorhauer, A., Schafler, E., Kohout, J.: The role of hydrostatic pressure in severe plastic deformation. Adv. Eng. Mater. 5(5), 330–337 (2003)

    Article  Google Scholar 

  77. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Jensen, D.J., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., Rollett, A.D.: Current issues in recrystallization: a review. Mater. Sci. Eng. 238(2), 219–274 (1997)

    Article  Google Scholar 

  78. Wojciech, L., Suchanek, R.E.R.: Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006)

    Article  Google Scholar 

  79. Demazeau, G.: Solvothermal reactions: an original route for the synthesis of novel materials. J. Mater. Sci. 43(7), 2104–2114 (2008)

    Article  Google Scholar 

  80. Wang, Q., Pan, D.C., Jiang, S.C., Ji, X.L., An, L.J., Jiang, B.Z.: A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals. J. Cryst. Growth 286(1), 83–90 (2006)

    Article  Google Scholar 

  81. Li, J.Q., Feng, X.W., Sun, W.A., Ao, W.Q., Liu, F.S., Du, Y.: Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders. Mater. Chem. Phys. 112(1), 57–62 (2008)

    Article  Google Scholar 

  82. Lu, P.X., Wu, F., Han, H.L., Wang, Q.A., Shen, Z.G., Hu, X.: Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite. J. Alloys Compd. 505(1), 255–258 (2010)

    Article  Google Scholar 

  83. Tritt, T.M.: Thermal Conductivity, Theory, Properties and Applications. Kluwer Academic/Plenum Publishers, New York (2004)

    Book  Google Scholar 

  84. Zhang, L., Rogl, G., Grytsiv, A., Puchegger, S., Koppensteiner, J., Spieckermann, F., Kabelka, H., Reinecker, M., Rogl, P., Schranz, W., Zehetbauer, M., Carpenter, M.A.: Mechanical properties of filled antimonide skutterudites. Mater. Sci. Eng. B 170(1–3), 26–31 (2010)

    Article  Google Scholar 

  85. Toprak, M.S., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Muller, E.C., Gatti, C., Zhang, Y., Rowe, M., Muhammed, M.: The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14(12), 1189–1196 (2004)

    Article  Google Scholar 

  86. Salvador, J.R., Yang, J., Shi, X., Wang, H., Wereszczak, A.A., Kong, H., Uher, C.: Transport and mechanical properties of Yb-filled skutterudites. Philosophical Magazine 89(19), 1517–1534 (2009)

    Article  Google Scholar 

  87. Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited, London (1957)

    Google Scholar 

  88. Chernik, I.A., Kaidanov, V.I., Vinograd, M.I., Kolomoet, N.V.: Investigation of valence band of lead telluride using transport phenomena. Sov. Phys. Semiconduct. 2(6), 645 (1968)

    Google Scholar 

  89. Jovovic, V., Thiagarajan, S.J., Heremans, J.P., Komissarova, T., Khokhlov, D., Nicorici, A.: Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb[sub 1 - x]Sn[sub x]Te alloys. J. Appl. Phys. 103(5), 053710 (2008)

    Article  Google Scholar 

  90. Jovovic, V., Thiagarajan, S.J., West, J., Heremans, J.P., Story, T., Golacki, Z., Paszkowicz, W., Osinniy, V.: Transport and magnetic properties of dilute rare-earth-PbSe alloys. J. Appl. Phys. 102(4), 043707 (2007)

    Article  Google Scholar 

  91. Singh, D.J., Pickett, W.E.: Skutterudite antimonides—quasi-linear bands and unusual transport. Phys. Rev. B 50(15), 11235–11238 (1994)

    Article  Google Scholar 

  92. Sofo, J.O., Mahan, G.D.: Electronic structure and transport properties of CoSb3: a narrow band-gap semiconductor. Mater. Res. Soc. Symp. Proc. 545, 315–320 (1999)

    Article  Google Scholar 

  93. Koga, K., Akai, K., Oshiro, K., Matsuura, M.: Electronic structure and thermoelectric property of skutterudite CoSb3. Thermoelectric Materials 2001-Research and Applications, November 26, 2001–November 29, 2001 691, 339–344 (2002)

    Google Scholar 

  94. Dedkov, Y.S., Molodtsov, S.L., Rosner, H., Leithe-Jasper, A., Schnelle, W., Schmidt, M., Grin, Y.: Divalent state of ytterbium in YbFe4Sb12 filled skutterudite. Phys. C Supercond. 460–462, 698–699 (2007)

    Article  Google Scholar 

  95. Takegahara, K., Harima, H.: Electronic band structure of the filled skutterudite YbFe4Sb12. J. Phys. Soc. Jpn. 71, 240–242 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, C., Zhang, L., Sakamoto, J. (2014). Thermoelectric Properties of p-Type Skutterudite Nanocomposites. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics