Skip to main content

Cerium-, Samarium-, Holmium-Doped Bi88Sb12

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

  • 2745 Accesses

Abstract

Bi88Sb12 alloy has been doped with 0, 0.066, 0.66, 1.32, and 3.91 % Sm and prepared under two different fabrication conditions. The first being ball milled for 12 h and hot pressed at 240 °C and the second ball milled for 6 h and hot pressed at 200 °C. The results are in agreement with previously studied Ce and Ho samples prepared under similar conditions. A slight ZT enhancement is seen due to doping which is an effect of an enhanced Seebeck coefficient as a result of a decrease in the carrier concentration. The enhancement does not appear to be caused by the magnetic moments of Ce, Sm, and Ho based on the similar change to the gap size with the widely varying magnetic moments of the dopants. In addition, lattice thermal transport in these materials was investigated experimentally and theoretically where phonon dispersions were obtained from first principle calculations, and semiclassical models were used to calculate phonon lifetimes. We have not observed a strong thermal conductivity dependence on the type of the impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G.E., Wolfe, R.: J. Appl. Phys. 33, 84 (1962)

    Google Scholar 

  2. Wolfe, R., Smith, G.E.: Appl. Phys. Lett. 1, 5 (1962)

    Article  Google Scholar 

  3. Lenoir, B., Cassart, M., Michenaud, J.P., Scherrer, H., Scherrer, S.: J. Phys. Chem. Solids 59, 129 (1998)

    Article  Google Scholar 

  4. Lenoir, B., Cassart, M., Michenaud, J.P., Scherrer, H., Scherrer, S.: J. Phys. Chem. Solids 57, 89 (1996)

    Article  Google Scholar 

  5. Jain, A.L.: Phys. Rev. 114, 1518 (1959)

    Article  Google Scholar 

  6. Ellet, M.R., Horst, R.B., Williams, L.R., Cuff, K.F.: J. Phys. Soc. Jpn. 21, 666 (1966)

    Google Scholar 

  7. Chao, P.W., Chu, H.T., Kao, Y.H.: Phys. Rev. B 9, 4030 (1974)

    Article  Google Scholar 

  8. Oelgart, G., Schneider, B., Kraak, W., Herrmann, R.: Phys. Status Solidi (b) 74, K75 (1976)

    Google Scholar 

  9. Kraak, W., Oelgart, G., Schneider, G., Herrmann, R.: Phys. Status Solidi (b) 88, 105 (1978)

    Google Scholar 

  10. Kitagawa, H., Noguchi, H., Kiyabu, T., Itoh, M., Noda, Y.: J. Phys. Chem. Solids 65, 1223 (2004)

    Article  Google Scholar 

  11. Yim, W.M., Amith, A.: Solid-State Electron. 15, 1141 (1972)

    Article  Google Scholar 

  12. Golin, S.: Phys. Rev. 176, 830 (1968)

    Article  Google Scholar 

  13. Brandt, N.B., Hermann, R., Golysheva, G.I., Devyatkova, L.I., Kusnik, D., Kraak, W., Ponomarev, Y.G.: Sov. Phys. JETP 56, 1247 (1982)

    Google Scholar 

  14. Mendez, E.E.: PhD Thesis, MIT (1979)

    Google Scholar 

  15. Brandt, N.B., Svistova, E.A.: J. Low Temp. Phys. 2, 1 (1970)

    Google Scholar 

  16. Hiruma, K., Kido, G., Kawauchi, K., Miura, N.: Sol. St. Comm. 33, 257 (1980)

    Article  Google Scholar 

  17. Brandt, N.B., Chudinov, S.M.: Sov. Phys. JETP. 32, 815 (1971)

    Google Scholar 

  18. Mendez, E.E., Misu, A., Dresselhaus, M.S.: Phys. Rev. B 24, 639 (1981)

    Article  Google Scholar 

  19. Devaux, X., Brochin, F., Martin-Lopez, R., Scherrer, H.: J. Phys. Chem. Solids 63, 119 (2002)

    Article  Google Scholar 

  20. Martin-Lopez, R., Dauscher, A., Scherrer, H., Hejtmanek, J., Kenzari, H., Lenoir, B.: Appl. Phys. A 68, 597 (1999)

    Article  Google Scholar 

  21. Sharp, J.W., Volckmann, E.H., Goldsmid, H.J.: Phys. Status Solidi (a) 2, 257 (2001)

    Google Scholar 

  22. Belaya, A.D., Zayakin, S.A., Zemskov, V.S.: J. Adv. Mater. 2, 158 (1994)

    Google Scholar 

  23. Ivanov, G.A., Kulikov, V.A., Naletov, V.L., Panarin, A.F., Regel, A.R.: Sov. Phys. Semicond. 7, 1134 (1973)

    Google Scholar 

  24. Liu, H.J., Li, L.F.: J. Alloys Comp. 433, 279 (2007)

    Article  Google Scholar 

  25. Dutta, S., Shubha, V., Ramesh, T.G., D’Sa, F.: J. Alloys Comp. 467, 305 (2009)

    Article  Google Scholar 

  26. Tritt, T.M.: Recent Trends in Thermoelectric Materials Research. Academic, Boston (2001)

    Google Scholar 

  27. Lukas, K.C., Joshi, G., Modic, K., Ren, Z.F., Opeil, C.P.: J. Mater. Sci. 47, 5729 (2012)

    Google Scholar 

  28. Lukas, K.C., Zhao, H., Stillwell, R.L., Ren, Z.F., Opeil, C.P.: MRS Online Proc. Library mrss12-1456-jj01-04, doi:10.1557/opl.2012.1368 (2012)

  29. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. IEEE Press, New Jersey (2009)

    Google Scholar 

  30. Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, New York (1998)

    Google Scholar 

  31. Hattori, T.: J. Phys. Soc. Jpn. 29(5), 1224 (1970)

    Google Scholar 

  32. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Heidelberg (2001)

    Book  Google Scholar 

  33. Tritt, T.M.: Thermal Conductivity. Kluwer Academic/Plenum, New York (2003)

    Google Scholar 

  34. Suryanarayana, C.: Prog. in Mater. Sci. 46, 1 (2001)

    Google Scholar 

  35. Ashcroft, N.E., Mermin, N.D.: Solid State Physics. Saunders, New York (1976)

    Google Scholar 

  36. Zebarjadi, M., Yang, J., Lukas, K., Kozinsky, B., Yu, B., Dresselhaus, M.S., Opeil, C.P., Ren, Z.F., Chen, G.: J. Appl. Phys. 112, 044305 (2012)

    Article  Google Scholar 

  37. Lukas, K.C., Liu, W.S., Joshi, G., Zebarjadi, M., Dresselhaus, M.S., Ren, Z.F., Chen, G., Opeil, C.P.: Phys. Rev. B 85, 205410 (2012)

    Article  Google Scholar 

  38. Gonze et al., X.: Comput. Phys. Commun. 180 (2009)

    Google Scholar 

  39. Hartwigsen, C., Goedecker, S., Hutter, J.: Phys. Rev. B 58 (1998)

    Google Scholar 

  40. Esfarjani, K., Stokes, H. T.: Phys. Rev. B 77 (2008)

    Google Scholar 

  41. Abeles, B.: Physical Review 131 (1963)

    Google Scholar 

  42. Walker, C.T., Pohl, R.O.: Phys. Rev. 131, 1433 (1963)

    Article  Google Scholar 

  43. Klemens, P.G.: Solid State Phys. 7, 1 (1958), Edited by Seitz, F., Turnbull, D. (Academic, New York)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding for this work through the “Solid State Solar-Thermal energy conversion Center (S3TEC),” an energy frontier research center founded by the US Department of Energy, Office of Basic Energy Science, under award number DE-SC0001299/DE-FG02-09ER46577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril P. Opeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Opeil, C.P., Lukas, K.C. (2014). Cerium-, Samarium-, Holmium-Doped Bi88Sb12 . In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics