Skip to main content

Control Thermal Conductivity of Semiconductor Nanowires: Phononics Engineering

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

The field of nanoscale thermoelectrics has progressed enormously recently because of the strong global demand for pollution-free forms of energy conversion. Rapid development and exciting innovative breakthroughs in the field over the last decades have occurred in large part due to newly emerged nanoscale materials with reduced thermal conductivity, and newly developed physical concepts, which make it possible to modify the thermal conductivity of nanoscale materials. We review recent experimental and theoretical advances in the study of thermal conductivity and thermoelectric property of nanowires. We first present several theoretical and experimental results on the reduction of thermal conductivity and the improvement of the thermoelectric figure of merit, including size effect, roughness effect, isotopically doped impurity, surface and interface phonon scattering. We then discuss coherent phonon resonance in core–shell nanowires and its impact on thermal conductivity. Finally, we highlight the importance of these effects on the figure of merit of nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Outlook 2004: Paris: IEA, 2004-10-26, ISBN 92-64-1081-73, 13 June 2006

    Google Scholar 

  2. EPA Report on Sever and Data Center Energy Efficiency, 22 Sept 2009

    Google Scholar 

  3. DiSalvo, F.J.: Science 285, 703 (1999)

    Article  Google Scholar 

  4. Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Energy Environ. Sci. 5, 5147 (2012)

    Article  Google Scholar 

  5. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  6. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Appl. Phys. Lett. 83, 2934 (2003)

    Article  Google Scholar 

  7. Zhang, G., Zhang, Q., Bui, C.-T., Lo, G.-Q., Li, B.: Appl. Phys. Lett. 94, 213108 (2009)

    Article  Google Scholar 

  8. Zhang, G., Zhang, Q.-X., Kavitha, D., Lo, G.-Q.: Appl. Phys. Lett. 95, 243104 (2009)

    Article  Google Scholar 

  9. Rowe, D.M. (ed.):Thermoelectrics Handbook: Macro to Nano. Taylor & Francis, London (2006)

    Google Scholar 

  10. Hochbaum, A.I., Chen, R., Delgado, R.D., et al.: Nature 451, 163 (2008)

    Article  Google Scholar 

  11. Boukai, A.I., Bunimovich, Y., Kheli, J.T., et al.: Nature 451, 168 (2008)

    Article  Google Scholar 

  12. Dubi, Y., Di Ventra, M.: Rev. Mod. Phys. 83, 131 (2011)

    Article  Google Scholar 

  13. Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Rev. Mod. Phys. 84, 1045 (2012)

    Article  Google Scholar 

  14. Zhang, G., Li, B.: NanoScale 2, 1058 (2010)

    Article  Google Scholar 

  15. Pop, E.: Nano Res. 3, 147 (2010)

    Article  Google Scholar 

  16. Liu, S., Xu, X., Xie, R., Zhang, G., Li, B.: Eur. Phys. J. B 85, 337 (2012)

    Article  Google Scholar 

  17. Balandin, A.A.: Nat. Mater. 10, 569 (2011)

    Article  Google Scholar 

  18. Nika, D.L., Balandin, A.A.: J. Phys. Condens. Matter 24, 233203 (2012)

    Article  Google Scholar 

  19. Mohammad Sadeghi, M., Thompson Pettes, M., Shi, L.: Solid State Commun. 152, 1321 (2012)

    Article  Google Scholar 

  20. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumder, A., Maris, H.J., Merlin, R., Phillpot, S.R.: J. Appl. Phys. 93, 793 (2003)

    Article  Google Scholar 

  21. Yang, N., Xu, X., Zhang, G., Li, B.: AIP Adv. 2, 041410 (2012)

    Article  Google Scholar 

  22. Xia, Y., Yang, P., et al.: Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  23. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Science 293, 1289 (2001)

    Article  Google Scholar 

  24. Zhang, G.-J., Zhang, G., Chua, H.J., Chee, R.-E., Wong, E.H., Agarwal, A., Buddharaju, K.D., Singh, N., Gao, Z., Balasubramanian, N.: Nano Lett. 8, 1066 (2008)

    Article  Google Scholar 

  25. Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M.: Nature 441, 489 (2006)

    Article  Google Scholar 

  26. Hu, L., Chen, G.: Nano Lett. 7, 3249 (2007)

    Article  Google Scholar 

  27. Donadio, D., Galli, G.: Phys. Rev. Lett. 102, 195901 (2009)

    Article  Google Scholar 

  28. Volz, S.G., Chen, G.: Appl. Phys. Lett. 75, 2056 (1999)

    Article  Google Scholar 

  29. Volz, S.G., Chen, G.: Phys. Rev. B 61, 2651 (2000)

    Article  Google Scholar 

  30. Chen, J., Zhang, G., Li, B.: J. Chem. Phys. 135, 204705 (2011)

    Article  Google Scholar 

  31. Liang, L.H., Li, B.: Phys. Rev. B 73, 153303 (2006)

    Article  Google Scholar 

  32. Yang, N., Zhang, G., Li, B.: Nano Lett. 8, 276 (2008)

    Article  Google Scholar 

  33. Gibbons, T.M., Estreicher, S.K.: Phys. Rev. Lett. 102, 255502 (2009)

    Article  Google Scholar 

  34. Moutanabbir, O., Senz, S., Zhang, Z., Gösele, U.: Nano Today 4, 393 (2009)

    Article  Google Scholar 

  35. Yu, X.Y., Chen, G., Verma, A., Smith, J.S.: Appl. Phys. Lett. 67, 3554 (1995)

    Article  Google Scholar 

  36. Huxtable, S.T., Abramson, A.R., Tien, C.-L., Majumdar, A., et al.: Appl. Phys. Lett. 80, 1737 (2002)

    Article  Google Scholar 

  37. Chen, J., Zhang, G., Li, B.: Appl. Phys. Lett. 95, 073117 (2009)

    Article  Google Scholar 

  38. Chen, J., Zhang, G., Li, B.: Nano Lett. 10, 3978 (2010)

    Article  Google Scholar 

  39. Chen, J., Zhang, G., Li, B.: J. Chem. Phys. 135, 104508 (2011)

    Article  Google Scholar 

  40. Chen, J., Zhang, G., Li, B.: Nano Lett. 12, 2826 (2012)

    Article  Google Scholar 

  41. Wingert, M.C., Chen, Z.C.Y., Dechaumphai, E., Moon, J., Kim, J.-H., Xiang, J., Chen, R.: Nano Lett. 11, 5507 (2011)

    Article  Google Scholar 

  42. Shi, L., Yao, D., Zhang, G., Li, B.: Appl. Phys. Lett. 95, 063102 (2009)

    Article  Google Scholar 

  43. Yang, J.-E., Jin, C.-B., Kim, C.-J., Jo, M.-H.: Appl. Phys. Lett. 6, 2679 (2006)

    Google Scholar 

  44. Shi, L., Yao, D., Zhang, G., Li, B.: Appl. Phys. Lett. 96, 173108 (2010)

    Article  Google Scholar 

  45. Joshi, G., Lee, H., Lan, Y., et al.: Nano Lett. 8, 4670 (2008)

    Article  Google Scholar 

  46. Zhu, G.H., Lee, H., Lan, Y.C., et al.: Phys. Rev. Lett. 102, 196803 (2009)

    Article  Google Scholar 

  47. Shelley, M., Mostofi, A.A.: EPL 94, 67001 (2011)

    Article  Google Scholar 

  48. Shi, L., Jiang, J., Zhang, G., Li, B.: Appl. Phys. Lett. 101, 233114 (2012)

    Article  Google Scholar 

  49. Chen, K.-Q., Li, W.-X., Duan, W., Shuai, Z., Gu, B.-L.: Phys. Rev. B 72, 045422 (2005)

    Article  Google Scholar 

  50. Markussen, T., Jauho, A.-P., Brandbyge, M.: Phys. Rev. Lett. 103, 055502 (2009)

    Article  Google Scholar 

  51. Li, H.P., De Sarkar, A., Zhang Jr., R.Q.: EPL 96, 56007 (2011)

    Article  Google Scholar 

  52. Wang, Z., Xie, R., Bui, C.T., Liu, D., Ni, X., Li, B., Thong, J.T.L.: Nano Lett. 11, 113 (2011)

    Article  Google Scholar 

  53. Beloborodov, I.S., Lopatin, A.V., Vinokur, V.M., Efetov, K.B.: Rev. Mod. Phys. 79, 469 (2007)

    Article  Google Scholar 

  54. Glatz, A., Beloborodov, I.S.: Phys. Rev. B 79, 041404R (2009)

    Article  Google Scholar 

  55. Glatz, A., Beloborodov, I.S.: Phys. Rev. B 79, 235403 (2009)

    Article  Google Scholar 

  56. Glatz, A., Beloborodov, I.S.: Phys. Rev. B 80, 245440 (2009)

    Article  Google Scholar 

  57. Markussen, T.: Nano Lett. 12, 4698 (2012)

    Article  Google Scholar 

  58. Tian, Y., Sakr, M.R., Kinder, J.M., Liang, D., MacDonald, M.J., Richard, L., Qiu, J., Gao, H.-J., Gao, X.P.A.: Nano Lett. 12, 6492 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Baowen Li, Nuo Yang, Jie Chen, Xiaoxi Ni, Lihong Shi, Donglai Yao, ChenXi Yu, Xiuqiang Li, Wanli Ma, Qing Shi, Haishuo Zhang for fruitful collaborations in different stages of this project. This work has been supported by grants from National Natural Science Foundation of China (Grant No. 11274011), the Ministry of Education of China (Grant No. 20110001120133), the Ministry of Science and Technology of China (Grant No. 2011CB933001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, G., Zhang, YW. (2014). Control Thermal Conductivity of Semiconductor Nanowires: Phononics Engineering. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics