Skip to main content

Thermal Conductivity of Particulate Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

The modeling of the thermal conductivity of composites made up of metallic and non-metallic micro/nanoparticles embedded in a solid matrix is discussed in detail, at both the dilute and non-dilute limits of particle concentrations. By modifying both the thermal conductivity of the matrix and particles, to take into account the strong scattering of the energy carriers with the surface of the nanoparticles, it is shown that the particle size effect shows up on the thermal conductivity of nanocomposites through: (1) the collision cross-section per unit volume of the particles and, (2) the mean distance that the energy carriers can travel inside the particles. The effect of the electron–phonon interactions within metallic particles shows up through the reduction of the thermal conductivity of these particles with respect to its values obtained under the Fourier law approach. The thermal conductivity of composites with metallic particles depend strongly on (1) the relative size of the particles with respect to the intrinsic coupling length, and (2) the ratio between the electron and phonon thermal conductivities. The obtained results have shown that the size dependence of the composite thermal conductivity appears not only through the interfacial thermal resistance but also by means of the electron–phonon coupling. Furthermore, at the non-dilute limit, the interaction among the particles is taken into account through a crowding factor, which is determined by the effective volume of the particles. The proposed crowding factor model is able to capture accurately the effect of the interactions among the particles for concentrations up to the maximum packing fraction of the particles. The predictions of the obtained analytical models are in good agreement with available experimental and numerical data and they can be applied to guide the design and improve the thermal performance of composite materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge, NY (2002)

    Book  MATH  Google Scholar 

  2. Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  3. Maxwell, J.C.: Electricity and Magnetism. Clarendon, Oxford (1873)

    Google Scholar 

  4. Benveniste, Y.: Effective thermal-conductivity of composites with a thermal contact resistance between the constituents—nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)

    Article  Google Scholar 

  5. Hasselman, D.P.H., Johnson, L.F.: Effective thermal-conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)

    Article  Google Scholar 

  6. Nan, C.W., Jin, F.S.: Multiple-scattering approach to effective properties of piezoelectric composites. Phys. Rev. B 48, 8578–8582 (1993)

    Article  Google Scholar 

  7. Nan, C.W.: Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)

    Article  Google Scholar 

  8. Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  Google Scholar 

  9. Khitun, A., Balandin, A., Liu, J.L., Wang, K.L.: In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696–699 (2000)

    Article  Google Scholar 

  10. Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B. 73, 174203–174215 (2006)

    Article  Google Scholar 

  11. Prasher, R.: Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. J. Appl. Phys. 100, 034307–034315 (2006)

    Article  Google Scholar 

  12. Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B. 75, 064206–064214 (2007)

    Article  Google Scholar 

  13. Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105–073107 (2007)

    Article  Google Scholar 

  14. Tian, W.X., Yang, R.G.: Thermal conductivity modeling of compacted nanowire composites. J. Appl. Phys. 101, 054320–054324 (2007)

    Article  Google Scholar 

  15. Jeng, M.S., Yang, R.G., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Trans. Trans. ASME 130, 042410–042420 (2008)

    Article  Google Scholar 

  16. Yang, R.G., Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Physical. Rev. B 69, 10 (2004)

    Google Scholar 

  17. Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical. Rev. B 57, 14958–14973 (1998)

    Article  Google Scholar 

  18. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken, NJ (2005)

    Google Scholar 

  19. Tian, W.X., Yang, R.G.: Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput. Model. Eng. Sci. 24, 123–141 (2008)

    Google Scholar 

  20. Tian, W.X., Yang, R.G.: Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Appl. Phys. Lett. 90, 263105–263108 (2007)

    Article  Google Scholar 

  21. Yang, R.G., Chen, G., Dresselhaus, S.M.: Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 72, 125418–125424 (2005)

    Article  Google Scholar 

  22. Prasher, R.: Thermal boundary resistance of nanocomposites. Int. J. Heat Mass. Tran. 48, 4942–4952 (2005)

    Article  MATH  Google Scholar 

  23. Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: On the thermal conductivity of particulate nanocomposites. Appl. Phys. Lett. 98, 233111–233113 (2011)

    Article  Google Scholar 

  24. Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford. New York (2005)

    Google Scholar 

  25. Flammer, C.: Spheroidal Wave Functions. Dover Publications, Mineola, N.Y. (2005)

    Google Scholar 

  26. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier, Boston (2005)

    MATH  Google Scholar 

  27. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  28. Majumdar, A., Reddy, P.: Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004)

    Article  Google Scholar 

  29. Kaganov, M.I., Lifshitz, I.M., Tanatarov, M.V.: Relaxation between electrons and crystalline lattices. Sov. Phys. JETP 4, 173–178 (1957)

    MATH  Google Scholar 

  30. Anisimov, S.I., Kapeliovich, B.L., Perelman, T.L.: Electron emission from metals surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    Google Scholar 

  31. Qiu, T.Q., Tien, C.L.: Heat-transfer mechanisms during short-pulse laser-heating of metals. J. Heat Tran. Trans. ASME 115, 835–841 (1993)

    Article  Google Scholar 

  32. Lin, Z., Zhigilei, L.V., Celli, V.: Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133–075149 (2008)

    Article  Google Scholar 

  33. Luh, D.A., Miller, T., Paggel, J.J., Chiang, T.C.: Large electron-phonon coupling at an interface. Phys. Rev. Lett. 88, 256802–256805 (2002)

    Article  Google Scholar 

  34. Melnikov, D.V., Fowler, W.B.: Electron-phonon interaction in a spherical quantum dot with finite potential barriers: The Frohlich Hamiltonian. Phys. Rev. B 64, 245320–245328 (2001)

    Article  Google Scholar 

  35. Byerly, W.E.: An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Dover Publications, Mineola, NY (2003)

    Google Scholar 

  36. Hopkins, P.E., Kassebaum, J.L., Norris, P.M.: Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films. J. Appl. Phys. 105, 023710–023717 (2009)

    Article  Google Scholar 

  37. Mahan, G.D.: Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79, 075408–075413 (2009)

    Article  Google Scholar 

  38. Sergeev, A.V.: Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 58, 10199–10202 (1998)

    Article  Google Scholar 

  39. Landau, L.D., Lifshits, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon, Oxford, New York (1984)

    Google Scholar 

  40. Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A model for the effective thermal conductivity of metal-nonmetal particulate composites. J. Appl. Phys. 111, 044319–044330 (2012)

    Article  Google Scholar 

  41. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, San Francisco (2002)

    Google Scholar 

  42. Swartz, E.T., Pohl, R.O.: Thermal-resistance at interfaces. Appl. Phys. Lett. 51, 2200–2202 (1987)

    Article  Google Scholar 

  43. Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)

    Article  Google Scholar 

  44. Davis, L.C., Artz, B.E.: Thermal-conductivity of metal-matrix composites. J. Appl. Phys. 77, 4954–4960 (1995)

    Article  Google Scholar 

  45. Kanskar, M., Wybourne, M.N.: Measurement of the acoustic-phonon mean free-path in a freestanding metal-film. Phys. Rev. B 50, 168–172 (1994)

    Article  Google Scholar 

  46. Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B 82, 075418–075426 (2010)

    Article  Google Scholar 

  47. Chantrenne, P., Raynaud, M., Baillis, D., Barrat, J.L.: Study of phonon heat transfer in metallic solids from molecular dynamic simulations. Microscale Thermophys. Eng. 7, 117–136 (2003)

    Article  Google Scholar 

  48. Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)

    Article  Google Scholar 

  49. Zeng, T.F., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Tran. Trans. ASME 123, 340–347 (2001)

    Article  Google Scholar 

  50. Hasselman, D.P.H., Donaldson, K.Y., Liu, J., Gauckler, L.J., Ownby, P.D.: Thermal-conductivity of a particulate-diamond-reinforced cordierite matrix composite. J. Am. Ceram. Soc. 77, 1757–1760 (1994)

    Article  Google Scholar 

  51. Nielsen, L.E.: The thermal and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fund. 13, 17–20 (1974)

    Article  Google Scholar 

  52. Lewis, T.B., Nielsen, L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)

    Article  Google Scholar 

  53. Nielsen, L.E.: Generalized equation for elastic moduli of composite materials. J. Appl. Phys. 41, 4626–4627 (1970)

    Article  Google Scholar 

  54. Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik 24, 636–664 (1935)

    Article  Google Scholar 

  55. Norris, A.N., Sheng, P., Callegari, A.J.: Effective-medium theories for two-phase dielectric media. J. Appl. Phys. 57, 1990–1996 (1985)

    Article  Google Scholar 

  56. Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle-size on the thermal-conductivity of Zns diamond composites. Acta Metall. Mater. 40, 123–129 (1992)

    Article  Google Scholar 

  57. Ordonez-Miranda, J., Alvarado-Gil, J.J.: Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72, 853–857 (2012)

    Article  Google Scholar 

  58. Ordonez-Miranda, J., Alvarado-Gil, J.J., Medina-Ezquivel, R.: Generalized bruggeman formula for the effective thermal conductivity of particulate composites with an interface layer. Int. J. Thermophys. 31, 975–986 (2010)

    Article  Google Scholar 

  59. Bussian, A.E.: Electrical conductance in a porous-medium. Geophysics 48, 1258–1268 (1983)

    Article  Google Scholar 

  60. Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. J. Appl. Phys. 114, 064306–064312 (2013)

    Google Scholar 

  61. Chang, W.-y., Tsai, H.-f., Lai, C.-C.: Imperfect competition and crowding out. Econ. Lett. 41, 73–79 (1993)

    Article  Google Scholar 

  62. Vand, V.: Viscosity of solutions and suspensions. J. Phys. Colloid Chem. 52, 277–299 (1948)

    Article  Google Scholar 

  63. Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170 (1951)

    Article  Google Scholar 

  64. Aczél, J., Dhombres, J.G.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  65. Hassani, S.: Mathematical Physics: A Modern Introduction to Its Foundations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  66. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman & Hall, Boca Raton (2003)

    Google Scholar 

  67. Wong, C.P., Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999)

    Article  Google Scholar 

  68. Wang, J.J., Yi, X.S.: Preparation and the properties of PMR-type polyimide composites with aluminum nitride. J. Appl. Polym. Sci. 89, 3913–3917 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support for studying thermal and thermoelectric transport in nanostructured materials by AFOSR Thermal Science Program (Grant No. FA9550-11-1-0109), AFOSR STTR programs (PI: Dr. Sayan Naha) and DARPA ACM Program (PI: Dr. Jeff Sharp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronggui Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ordonez-Miranda, J., Yang, R., Alvarado-Gil, J.J. (2014). Thermal Conductivity of Particulate Nanocomposites. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics