Skip to main content

SiGe Nanowires for Thermoelectrics Applications

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

  • 2779 Accesses

Abstract

The possibility to reduce the thermal conductivity leaving essentially unaltered the electron transport makes semiconducting nanowires ideal materials for the engineering of high-efficiency thermoelectric devices. A simple and appealing route to achieve these goals is bringing together Si and Ge, giving rise to Si1−x Ge x alloy nanowires with tunable Ge concentration, core–shell structures and multiple axial junctions, i.e. superlattices. In this chapter we review the most recent progresses in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hicks, L.D., Dresselhaus, M.S.: Phys. Rev. B 47, 16631 (1993)

    Article  Google Scholar 

  2. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: Adv. Mater. 15(5), 353 (2003)

    Article  Google Scholar 

  3. Lu, W., Lieber, C.M.: J. Phys. D: Appl. Phys. 39(21), R387 (2006)

    Article  Google Scholar 

  4. Wu, X., Kulkarni, J.S., Collins, G., Petkov, N., Almécija, D., Boland, J.J., Erts, D., Holmes, J.D.: Chem. Mater. 20(19), 5954 (2008)

    Article  Google Scholar 

  5. Rurali, R.: Rev. Mod. Phys. 82(1), 427 (2010)

    Article  Google Scholar 

  6. Morales, A.M., Lieber, C.M.: Science 279(5348), 208 (1998)

    Article  Google Scholar 

  7. Holmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A.: Science 287(5457), 1471 (2000)

    Article  Google Scholar 

  8. Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M.: Appl. Phys. Lett. 78(15), 2214 (2001)

    Article  Google Scholar 

  9. Coleman, N.R.B., Morris, M.A., Spalding, T.R., Holmes, J.D.: J. Am. Chem. Soc. 123(1), 187 (2001)

    Article  Google Scholar 

  10. Coleman, N.R.B., O’Sullivan, N., Ryan, K.M., Crowley, T.A., Morris, M.A., Spalding, T.R., Steytler, D.C., Holmes, J.D.: J. Am. Chem. Soc. 123(29), 7010 (2001)

    Article  Google Scholar 

  11. Ma, D.D.D., Lee, C.S., Au, F.C.K., Tong, S.Y., Lee, S.T.: Science 299(5614), 1874 (2003)

    Article  Google Scholar 

  12. Cui, Y., Zhong, Z., Wang, D., Wang, W., Lieber, C.: Nano Lett. 3(2), 149 (2003)

    Article  Google Scholar 

  13. Wu, Y., Cui, Y., Huynh, L., Barrelet, C., Bell, D., Lieber, C.: Nano Lett. 4(3), 433 (2004)

    Article  Google Scholar 

  14. Zhong, Z., Fang, Y., Lu, W., Lieber, C.M.: Nano Lett. 5(6), 1143 (2005)

    Article  Google Scholar 

  15. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard III, W.A., Heath, J.R.: Nature 451(7175), 168 (2008)

    Article  Google Scholar 

  16. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Nature 451(7175), 163 (2008)

    Article  Google Scholar 

  17. de Laeter, J.R., Böhlke, J.K., De Bièvre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., Taylor, P.D.P.: Pure Appl. Chem. 75(6), 683 (2003)

    Article  Google Scholar 

  18. Wagner, R.S., Ellis, W.C.: Appl. Phys. Lett. 4(5), 89 (1964)

    Article  Google Scholar 

  19. Duan, X., Lieber, C.M.: Adv. Mater. 12(4), 298 (2000)

    Article  Google Scholar 

  20. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Lee, S.T.: Phys. Rev. B 58(24), R16024 (1998)

    Article  Google Scholar 

  21. Schmidt, V., Wittemann, J.V., Senz, S., Gösele, U.: Adv. Mater. 21(25–26), 2681 (2009)

    Article  Google Scholar 

  22. Lew, K.K., Pan, L., Dickey, E., Redwing, J.: Adv. Mater. 15(24), 2073 (2003)

    Article  Google Scholar 

  23. Givan, U., Patolsky, F.: Nano Lett. 9(5), 1775 (2009)

    Article  Google Scholar 

  24. Wu, Y., Fan, R., Yang, P.: Nano Lett. 2(2), 83 (2002)

    Article  Google Scholar 

  25. Redwing, J.M., Lew, K.K., Bogart, T.E., Pan, L., Dickey, E.C., Carim, A.H., Wang, Y., Cabassi, M.A., Mayer, T.S.: Proc. SPIE 5361(1), 52 (2004)

    Article  Google Scholar 

  26. Dujardin, R., Poydenot, V., Devillers, T., Favre-Nicolin, V., Gentile, P., Barski, A.: Appl. Phys. Lett. 89(15), 153129 (2006)

    Article  Google Scholar 

  27. Zakharov, N., Werner, P., Gerth, G., Schubert, L., Sokolov, L., Gösele, U.: J. Cryst. Growth 290(1), 6 (2006)

    Article  Google Scholar 

  28. Mouchet, C., Latu-Romain, L., Cayron, C., Rouviere, E., Celle, C., Simonato, J.P.: Nanotechnology 19(33), 335603 (2008)

    Article  Google Scholar 

  29. Clark, T.E., Nimmatoori, P., Lew, K.K., Pan, L., Redwing, J.M., Dickey, E.C.: Nano Lett. 8(4), 1246 (2008)

    Article  Google Scholar 

  30. Perea, D.E., Li, N., Dickerson, R.M., Misra, A., Picraux, S.T.: Nano Lett. 11(8), 3117 (2011)

    Article  Google Scholar 

  31. Wen, C.Y., Reuter, M.C., Bruley, J., Tersoff, J., Kodambaka, S., Stach, E.A., Ross, F.M.: Science 326(5957), 1247 (2009)

    Article  Google Scholar 

  32. Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M.: Nature 441(7092), 489 (2006)

    Article  Google Scholar 

  33. Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Nature 420(6911), 57 (2002)

    Article  Google Scholar 

  34. Goldthorpe, I.A., Marshall, A.F., McIntyre, P.C.: Nano Lett. 8(11), 4081 (2008)

    Article  Google Scholar 

  35. Goldthorpe, I.A., Marshall, A.F., McIntyre, P.C.: Nano Lett. 9(11), 3715 (2009)

    Article  Google Scholar 

  36. Zhao, Y., Smith, J.T., Appenzeller, J., Yang, C.: Nano Lett. 11(4), 1406 (2011)

    Article  Google Scholar 

  37. Li, D., Wu, Y., Fan, R., Yang, P., Majumdar, A.: Appl. Phys. Lett. 83(15), 3186 (2003)

    Article  Google Scholar 

  38. Kim, H., Kim, I., jin Choi, H., Kim, W.: Appl. Phys. Lett. 96(23), 233106 (2010)

    Google Scholar 

  39. Yin, L., Lee, E.K., Lee, J.W., Whang, D., Choi, B.L., Yu, C.: Appl. Phys. Lett. 101, 043114 (2012)

    Article  Google Scholar 

  40. Martinez, J.A., Provencio, P.P., Picraux, S.T., Sullivan, J.P., Swartzentruber, B.S.: J. Appl. Phys. 110(7), 074317 (2011)

    Article  Google Scholar 

  41. Kim, H., Park, Y.H., Kim, I., Kim, J., Choi, H.J., Kim, W.: Appl. Phys. A 104, 23 (2011)

    Article  Google Scholar 

  42. Lee, E.K., Yin, L., Lee, Y., Lee, J.W., Lee, S.J., Lee, J., Cha, S.N., Whang, D., Hwang, G.S., Hippalgaonkar, K., Majumdar, A., Yu, C., Choi, B.L., Kim, J.M., Kim, K.: Nano Lett. 12, 2918 (2012)

    Article  Google Scholar 

  43. Wingert, M.C., Chen, Z.C.Y., Dechaumphai, E., Moon, J., Kim, J.H., Xiang, J., Chen, R.: Nano Lett. 11, 5507 (2011)

    Article  Google Scholar 

  44. Hu, M., Giapis, K.P., Goicochea, J.V., Zhang, X., Poulikakos, D.: Nano Lett. 11(2), 618 (2011)

    Article  Google Scholar 

  45. Moon, J., Kim, J.H., Chen, Z.C., Xiang, J., Chen, R.: Nano Lett. 13(3), 1196 (2013)

    Google Scholar 

  46. Hu, M., Poulikakos, D.: Nano Lett. 12(11), 5487 (2012)

    Article  Google Scholar 

  47. Wang, Z., Mingo, N.: Appl. Phys. Lett. 97(10), 101903 (2010)

    Article  Google Scholar 

  48. Steele, M.C., Rosi, F.D.: J. Appl. Phys. 29(11), 1517 (1958)

    Article  Google Scholar 

  49. Dames, C., Chen, G.: J. Appl. Phys. 95(2), 682 (2004)

    Article  Google Scholar 

  50. Tighe, T.S., Worlock, J.M., Roukes, M.L.: Appl. Phys. Lett. 70(20), 2687 (1997)

    Article  Google Scholar 

  51. Fon, W., Schwab, K.C., Worlock, J.M., Roukes, M.L.: Phys. Rev. B 66, 045302 (2002)

    Article  Google Scholar 

  52. Shi, L., Jiang, J., Zhang, G., Li, B.: Appl. Phys. Lett. 101(23), 233114 (2012)

    Article  Google Scholar 

  53. Shelley, M., Mostofi, A.A.: Europhys. Lett. 94(6), 67001 (2011)

    Article  Google Scholar 

  54. Chan, M.K.Y., Reed, J., Donadio, D., Mueller, T., Meng, Y.S., Galli, G., Ceder, G.: Phys. Rev. B 81, 174303 (2010)

    Article  Google Scholar 

  55. Markussen, T.: Nano Lett. 12(9), 4698 (2012)

    Article  Google Scholar 

  56. Amato, M., Ossicini, S., Rurali, R.: Nano Lett. 12(6), 2717 (2012)

    Article  Google Scholar 

  57. Chen, J., Zhang, G., Li, B.: Nano Lett. 12(6), 2826 (2012)

    Article  Google Scholar 

  58. Chen, J., Zhang, G., Li, B.: J. Chem. Phys. C 135(10), 104508 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding of the Spanish Ministry of Science and Technology under contracts FIS2009-12721-C04-03, CSD2007-00041, and FIS2012-37549-C05-05. M.A. acknowledges the support from the European Union through the FP7 Marie Curie Intra-European Fellowship No. 326794 (EXPRESS project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amato, M., Palummo, M., Ossicini, S., Rurali, R. (2014). SiGe Nanowires for Thermoelectrics Applications. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics