Skip to main content

Silicon Nanostructures for Thermoelectric Applications

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

  • 2772 Accesses

Abstract

In this chapter, an overview on silicon nanostructures for thermoelectric applications is presented. After an introduction on the key concepts of thermoelectricity, we show that nanostructuring is one of the most promising solutions for making high efficient thermoelectric devices. In particular, we discuss the use of nanostructured silicon as a good thermoelectric material, due to its abundance, its nontoxicity, and its technological pervasiveness in the society, compared to other materials often proposed in the literature. Furthermore, a top-down process for the reliable fabrication of very complex and large area arrays of silicon nanowires (SiNWs) is shown and discussed. Finally, we show that these networks can be employed for the fabrication of high efficiency thermoelectric generators, and the high reliability and the high tolerance with respect to SiNW width dispersion are demonstrated by means of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damen, K., Van Troost, M., Faaij, A., Turkenburg, W.: A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 32, 215 (2006)

    Google Scholar 

  2. Lund, H.: Renewable energy strategies for sustainable development. Energy 32, 912 (2007)

    Article  Google Scholar 

  3. Jefferson, M.: Sustainable energy development: performance and prospects. Ren. Energy 31, 571 (2006)

    Article  Google Scholar 

  4. Bubnova, O., Crispin, X.: Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 5, 9345 (2012)

    Article  Google Scholar 

  5. Rowe, D.M.: Handbook of Thermoelectrics. CRC Press, Boca Raton (1995)

    Book  Google Scholar 

  6. Xi, H., Luo, L., Fraisse, G.: Development and applications of solar-based thermoelectric technologies. Ren. Sust. Energy Rev. 11, 923 (2007)

    Article  Google Scholar 

  7. Fleurial, J.P.: Thermoelectric power generation materials: technology and application opportunities. JOM 61, 79 (2009)

    Article  Google Scholar 

  8. Yu, C., Chau, K.T.: Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers. Manag. 50, 1506 (2009)

    Article  Google Scholar 

  9. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 145 (2008)

    Article  Google Scholar 

  10. Stehlk, P.: Contribution to advances in waste-to-energy technologies. J. Clean. Prod. 17(10), 919 (2009)

    Article  Google Scholar 

  11. Yadav, G., Susoreny, J. A., Zhang, G., Yang, H., Wu, Y.: Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment. Nanoscale 3, 3555 (2011)

    Article  Google Scholar 

  12. Heikes, R.R., Ure, R.W.: Thermoelectricity: Science and Engineering. Interscience, New York (1961)

    Google Scholar 

  13. Dragoman, D., Dragoman, M.: Giant thermoelectric effect in graphene. Appl. Phys. Lett. 91, 203116 (2007)

    Article  Google Scholar 

  14. Ishiwata, S., Shiomi, Y., Lee, J.S., Bahramy, M.S., Suzuki, T., Uchida, M., Arita, R., Taguchi, Y., Tokura, Y.: Extremely high electron mobility in a phonon-glass semimetal. Nat. Mater. 12, 512 (2013)

    Article  Google Scholar 

  15. Snyder, G.J., Ursell, T.S.: Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148031 (2003)

    Article  Google Scholar 

  16. Snyder, G.J, Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  17. Tritt, T.M., Subramian, M.A.: Thermoelectric materials, phenomena, and applications: A Bird’s Eye View. Mrs Bull. 31(3), 188 (2006)

    Article  Google Scholar 

  18. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nat. Lett.451, 163 (2008)

    Google Scholar 

  19. Jones, W., March, N.H.: Theoretical Solid State Physics. Courier Dover Publications, New York (1985)

    Google Scholar 

  20. Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)

    Article  Google Scholar 

  21. Liang, G., Huang, W., Koong, C.S., Wang, J-S., Lan, J.: Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures. J. Appl. Phys. 107(1), 014317 (2010)

    Article  Google Scholar 

  22. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934 (2003)

    Article  Google Scholar 

  23. Hippalgaonkar, B.H.K., Chen, R., Sawyer, K., Ercius, P., Majumdar, A.: Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10(11), 4341 (2010)

    Article  Google Scholar 

  24. Liu, L., Chen, X.: Effect of surface roughness on thermal conductivity of silicon nanowires. J. Appl. Phys. 107(3), 033501 (2010)

    Article  Google Scholar 

  25. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Goddar, W.A., Heat, J.R.: Silicon nanowires as efficient thermoelectric materials. Nat. Lett. 451, 06458 (2008)

    Article  Google Scholar 

  26. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285(5428), 703 (1999)

    Article  Google Scholar 

  27. Koukharenko, E., Boden, S.A., Platzek, D., Bagnall, D.M., White, N.M.: Scalable silicon nanostructuring for thermoelectric applications. J. Electron. Mater. 42, 2144 (2013)

    Article  Google Scholar 

  28. Totaro, M., Pennelli, G., Bruschi, P.: Top down fabricated silicon nanowire networks for thermoelectric applications. Microelectron. Eng. 97, 157 (2012)

    Article  Google Scholar 

  29. Totaro, M., Pennelli, G., Piotto, M.: Investigation of silicon nanowire breakdown properties for the realization of one-time programmable memories. Microelectron. Eng. 88, 2413 (2010)

    Article  Google Scholar 

  30. Elibol, O.H., Morisette, D., Akin, D., Denton, J.P., Bashir, R.: Integrated nanoscale silicon sensors using top-down fabrication. Appl. Phys. Lett. 83, 4613 (2003)

    Article  Google Scholar 

  31. Pennelli, G., Piotto, M.: Fabrication and characterization of silicon nanowires with triangular cross section. J. Appl. Phys. 100, 054507 (2006)

    Article  Google Scholar 

  32. Pennelli, G., Pellegrini, B.: Fabrication of silicon nanostructures by geometry controlled oxidation. J. Appl. Phys. 101, 10450 (2007)

    Article  Google Scholar 

  33. Pennelli, G., Totaro, M., Nannini, A.: Correlation between surface stress and apparent young’s modulus of top-down silicon nanowires. ACS Nano 6, 10727 (2012)

    Google Scholar 

  34. Pennelli, G., Totaro, M., Bruschi, P.: Surface roughness and electron backscattering in high aspect ratio silicon nanowires. Microelectron. Eng. 88, 2368 (2010)

    Article  Google Scholar 

  35. Pennelli, G., Totaro, M., Piotto, M., Bruschi, P.: Seebeck coefficient of nanowires interconnected into large area networks. Nano Lett. 13, 2592 (2013)

    Article  Google Scholar 

  36. Pennelli, G., Totaro, M., Piotto, M.: Selective doping of silicon nanowires by means of electron beam stimulated oxide etching. Nano Lett. 12, 1096 (2012)

    Article  Google Scholar 

  37. Pennelli, G., D’Angelo, F., Piotto, M., Barillaro, G., Pellegrini, B.: A low cost high resolution pattern generator for electron-beam lithography. Rev. Sci. Instrum. 74, 3579 (2003)

    Article  Google Scholar 

  38. Pennelli, G.: Top down fabrication of long silicon nanowire devices by means of lateral oxidation. Microelectron. Eng. 89, 2139 (2006)

    Google Scholar 

  39. Frank, D.J., Lobb, C.J.: Highly efficient algorithm for percolative transport studies in two dimensions. Phys. Rev. B 37, 302 (1988)

    Article  MathSciNet  Google Scholar 

  40. Teukolsky, S.A., Vettering, W.T., Flannery, B.P., Press, W.H.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  41. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. CRC Press, London (1994)

    Google Scholar 

  42. Shklowskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors. Springer, New York (1984)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Totaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Totaro, M., Pennelli, G. (2014). Silicon Nanostructures for Thermoelectric Applications. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics