Skip to main content

Nanoscale Self-assembled Oxide Bulk Thermoelectrics

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

Thermoelectric materials directly convert thermal energy into electric energy through Seebeck effect. The nanostructured approach for these materials has led to significant improvements in the figure of merit mainly by tailoring the lattice thermal conductivity. In this chapter, we provide an overview of the strategies adopted for phonon scattering and its confinement in the nanostructures with the goal of reducing the thermal conductivity. We discuss the approaches that are being adopted for developing cost-effective thermoelectrics and identify the promise offered by oxide materials. Compared with the alloy-based thermoelectric materials, oxide thermoelectrics have many advantages including abundance of raw materials, low cost, non-toxicity, and thermal stability. Several important oxide thermoelectric candidates are introduced with specific focus on ZnO. Self-assembled nano-composites of ZnO have been shown to exhibit reduction in thermal conductivity by a factor of about three mainly due to the phonon scattering by uniformly distributed nanoprecipitates (ZnAl2O4) and large grain boundary area. The effects of nanoscale inclusion in Ca-Co-O system (Ca3Co4O9) and natural superlattices in SrO/SrTiO3 are also discussed. Several self-assembly techniques are discussed which are promising for fabrication of oxide thermoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laird Technologies, Thermoelectric Handbook. www.lairdtech.com

  2. Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012)

    Google Scholar 

  3. Stabler, F.: Benefits of thermoelectric technology for the automobile. Presented at DOE thermoelectric applications workshop, San Diego, CA, 2011

    Google Scholar 

  4. Samson, D., Kluge, M., Fuss, T., Schmid, U., Becker, T.: Flight test results of a thermoelectric energy harvester for aircraft. J. Electron. Mater. 41(6), 1134–1137 (2012)

    Google Scholar 

  5. Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Google Scholar 

  6. Wright, D.A.: Thermoelectric properties of bismuth telluride and its alloys. Nat. Mater. 181, 834 (1958)

    Google Scholar 

  7. Fano, V.: Lead telluride and its alloys, Chapter 21. In: Rowe, D.M. (ed.) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, FL (1995)

    Google Scholar 

  8. Nolas, G.S., Morelli, D.T., Tritt, T.M.: SKUTTERUDITES-a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89–116 (1999)

    Google Scholar 

  9. Vining, C.B.: Silicon germanium, Chapter 28. In: Rowe, D.M. (ed.) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, FL (1995)

    Google Scholar 

  10. Terasaki, I., Sasago, Y., Uchinokura, K.:Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997)

    Google Scholar 

  11. Shikano, M., Funahashi, R.: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851–1853 (2003)

    Google Scholar 

  12. Ohtaki, M., Tsubota, T., Eguchi, K., Arai, H.: High temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816–1818 (1996)

    Google Scholar 

  13. Okuda, T., Nakanishi, K., Miyasaka, S., Tokura, Y.: Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3. Phys. Rev. B 63, 113104 (2001)

    Google Scholar 

  14. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Google Scholar 

  15. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Google Scholar 

  16. Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)

    Google Scholar 

  17. Li, J.F., Liu, W.S., Zhao, L.D., Zhou, M.: High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2(4), 152–158 (2010)

    Google Scholar 

  18. Mahan, G.D., Sofo, J.O.: The best thermoelectrics. Proc. Natl. Acad. Sci. U. S. A. 93, 7436–7439 (1996)

    Google Scholar 

  19. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys Rev 113, 1046–1051 (1959)

    MATH  Google Scholar 

  20. Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–2471 (1963)

    Google Scholar 

  21. Ziman, J.M.: Electrons and Phonons. University Press, Oxford (1979)

    Google Scholar 

  22. Jones, W., March, N.H.: Theoretical Solid State Physics. Courier Dover, New York (1985)

    Google Scholar 

  23. Madsen, G.K.H., Schwarz, K., Blaha, P., Singh, D.J.: Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium and europium. Phys. Rev. B 68, 125212 (2003)

    Google Scholar 

  24. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford University Press, New York (1997)

    Google Scholar 

  25. Frenkel, D., Berend, S.: Understanding Molecular Simulation. Academic, San Diego (1996)

    MATH  Google Scholar 

  26. Votano, J.R., Parham, M., Hall, L.H., Kier, L.B., Hall, L.M.: Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation. Chem. Biodivers. 1, 1829–1841 (2004)

    Google Scholar 

  27. Zwanzig, R.: Time—correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem. 16, 67–102 (1965)

    Google Scholar 

  28. Ladd, A.J.C., Moran, B.: Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34, 5058–5064 (1986)

    Google Scholar 

  29. Jenkins, J.O., Rayne, J.A., Ure, R.W.: Elastic moduli and phonon properties of Bi2Te3. Phys. Rev. B 5, 3171–3184 (1972)

    Google Scholar 

  30. Kullmann, W., Eichhorn, G., Rauh, H., Geick, R., Eckold, G., Steigenberger, U.: Lattice dynamics and phonon dispersion in the narrow gap semiconductor Bi2Te3 with sandwich structure. Phys. Status Solidi B 162, 125–140 (1990)

    Google Scholar 

  31. Shiga, T., Shiomi, J., Esfarjani, K., Delaire, O., Chen, G.: Unpublished

    Google Scholar 

  32. Esfarjani, K., Chen, G., Stokes, H.T.: Heat transport in silicon from first principles calculations. Phys. Rev. B 84, 085204 (2011)

    Google Scholar 

  33. Shiomi, J., Esfarjani, K., Chen, G.: Thermal conductivity of half—Heusler compounds from first—principles calculations. Phys. Rev. B 84, 104302 (2011)

    Google Scholar 

  34. Kane, E.O.: Semiconductors and Semimetals, vol. 1. Academic, New York (1966). pp. 75–100

    Google Scholar 

  35. Huang, B.L., Kaviany, M.: Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 125209 (2008)

    Google Scholar 

  36. Singh, D.J.: Doping—dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010)

    Google Scholar 

  37. Parker, D., Chen, X., Singh, D.J.: High three dimensional thermoelectric performance from low dimensional bands. arXiv: 1211.4006. Cond. Mat. Mtrl. Sci. (2012)

    Google Scholar 

  38. Zhang, L., Singh, D.J.: Electronic structure and thermoelectric properties of layered PbSe-WSe2 materials. Phys. Rev. B 80, 075117 (2009)

    Google Scholar 

  39. Parker, D., Singh, D.J.: Potential thermoelectric performance from optimization of hole—doped Bi2Se3. Phys. Rev. X 1, 021005 (2011)

    Google Scholar 

  40. Balandin, A.A.: Nanophononics: phonon engineering in nanostructures and nanodevices. Nanosci. Nanotechnol. 5, 1015–1022 (2005)

    Google Scholar 

  41. Bhandari, C.M., Rowe, D.M.: Lattice Thermal Conductivity. Thermal Conduction in Semiconductors. University Press, Oxford (1979)

    Google Scholar 

  42. Saha, S.K.: Theoretical Study of Thermal Transport at Nano Constrictions and Nanowires with Sawtooth Surface Roughness, Ph.D. Thesis, University of Texas at Austin (2007)

    Google Scholar 

  43. Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.: Impact of phonon surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009)

    Google Scholar 

  44. Razeghi, M.: Fundamentals of Solid State Engineering. Springer, New York (2009)

    Google Scholar 

  45. Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    Google Scholar 

  46. Hochbaum, A.I., Chen, R.K., Delgado, R.D., Liang, W.J., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.D.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–168 (2008)

    Google Scholar 

  47. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Google Scholar 

  48. Pernot, G., Stoffel, M., Savic, I., Pezzoli, F., Chen, P., et al.: Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9, 491–495 (2010)

    Google Scholar 

  49. Tang, X.F., Xie, W.J., Li, H., Zhao, W.Y., Zhang, Q.J.: Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90, 012102 (2007)

    Google Scholar 

  50. Lee, S.-M., Cahill, D.G.: Thermal conductivity of Si–Ge superlattices. Appl. Phys. Lett. 70, 2957 (1997)

    Google Scholar 

  51. Hyldgaard, P., Mahan, G.D.: Phonon superlattice transportation. Phys. Rev. B 56, 10754–10757 (2000)

    Google Scholar 

  52. Huxtable, S.T., Abramson, A.R., Tien, C.-L., Majumdar, A.: Thermal conductivity of Si/Si/Ge and SiGe/SiGe superlattices. Appl. Phys. Lett. 80, 1737 (2002)

    Google Scholar 

  53. Caylor, J.C., Coonley, K., Stuart, J., Colpitts, T., Venkatasubramanian, R.: Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 023105 (2005)

    Google Scholar 

  54. Capinski, W.S., Maris, H.J.: Thermal conductivity of GaAs/AlAs superlattices. Phys. B 219–220, 699–701 (1996)

    Google Scholar 

  55. Kim, W., Singer, S.L., Majumdar, A., Vashaee, D., Bian, Z., et al.: Cross-plane lattice and electronic thermal conductivities of ErAs-InGaAs/InGaAlAs superlattices. Appl. Phys. Lett. 88(242107) (2006)

    Google Scholar 

  56. Koh, Y.K., Vineis, C.J., Calawa, S.D., Walsh, M.P., Cahill, D.G.: Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl. Phys. Lett. 94, 153101 (2009)

    Google Scholar 

  57. Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    Google Scholar 

  58. Fardy, M., Hochbaum, A.L., Goldberger, J., Zhang, M.M., Yang, P.: Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19, 3047–3051 (2007)

    Google Scholar 

  59. Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P., et al.: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)

    Google Scholar 

  60. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics—big efficiency gains from small features. Adv. Mater. 22, 3970 (2010)

    Google Scholar 

  61. Poudel, B., et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Google Scholar 

  62. Xie, W.J., Tang, X.F., Yan, Y.G., Zhang, Q.J., Tritt, T.M.: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009)

    Google Scholar 

  63. Hsu, K.F., et al.: Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)

    Google Scholar 

  64. Androulakis, J., et al.: Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1−ySny)mSbTe2+m. Adv. Mater. 18, 1170–1173 (2006)

    Google Scholar 

  65. Sootsman, J.R., Kong, H., Uher, C., D’Angelo, J.J., Wu, C.-I., Hogan, T.P., Caillat, T., Kanatzidis, M.G.: Large enhancements in the thermoelectric power factor of bulk pbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 120, 8746–8750 (2008)

    Google Scholar 

  66. Gueguen, A., Poudeu, P.F.P., Li, C.P., Moses, S., Uher, C., He, J.Q., Dravid, V., Paraskevopoulos, K.A., Kanatzidis, M.G.: Thermoelectric properties and nanostructuring in the p-type materials NaPb18−xSnxMTe20 (M = Sb, Bi). Chem. Mater. 21, 1683–1694 (2009)

    Google Scholar 

  67. Androulakis, J., Lin, C.-H., Kong, H.-J., Uher, C., Wu, C.-I., Hogan, T., Cook, B.A., Caillat, T., Paraskevopoulos, K.M., Kanatzidis, M.G.: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics, enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780–9788 (2007)

    Google Scholar 

  68. Girard, S.N., He, J., Li, C., Moses, S., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Lett. 10, 2825–2830 (2010)

    Google Scholar 

  69. Girard, S.N., He, J.Q., Zhou, X., Shoemaker, D., Jaworski, C., Uher, C., Dravid, V.P., Heremans, J.P., Kanatzidis, M.G.: High performance Na-doped PbTe_PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)

    Google Scholar 

  70. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Google Scholar 

  71. Van Nong, N., Pryds, N., Linderoth, S., Ohtaki, M.: Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv. Mater. 23, 2484–2490 (2011)

    Google Scholar 

  72. Jood, P., Mehta, R.J., Zhang, Y., Peleckis, G., Wang, X., Siegel, R.W., Borca-Tasciuc, T., Dou, S.X., Ramanath, G.: Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11, 4337–4342 (2011)

    Google Scholar 

  73. He, J.Q., Sootsman, J.R., Girard, S.N., Zheng, J.C., Wen, J.G., Zhu, Y., Kanatzidis, M.G., Dravid, V.P.: On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. J. Am. Chem. Soc. 132, 8669–8675 (2010)

    Google Scholar 

  74. He, J.Q., Gueguen, A., Sootsman, J., Zheng, J.C., Wu, L., Zhu, Y., Kanatzidis, M.G., Dravid, V.P.: Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials. J. Am. Chem. Soc. 131, 17828–17835 (2009)

    Google Scholar 

  75. Pei, Y., Heinz, N.A., LaLonde, A.D., Jeffrey Snyder, G.: Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011)

    Google Scholar 

  76. Rowe, D.M., Shukla, V.S., Savvides, N.: Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys. Nature 290, 765–766 (1981)

    Google Scholar 

  77. Lan, Y.C., et al.: Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 9, 1419–1422 (2009)

    Google Scholar 

  78. Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)

    Google Scholar 

  79. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    Google Scholar 

  80. Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., Ren, Z.F.: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008)

    Google Scholar 

  81. Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121–1127 (1996)

    Google Scholar 

  82. Liao, C.N., She, T.H.: Preparation of bismuth telluride thin films through interfacial reaction. Thin Solid Films 515, 8059–8064 (2007)

    Google Scholar 

  83. Miller, J.F., Himes, R.C.: Properties of PbSe prepared by powder-metallurgy techniques. J. Electrochem. Soc. 107, 915–919 (1960)

    Google Scholar 

  84. Christakudis, G.C., Plachkova, S.K., Shelimova, L.E., Avilov, E.S.: Thermoelectric figure of merit of some compositions in the system (GeTe)1−x[(Ag2Te)1−y(Sb2Te3)y]x. Phys. Status Solidi A 128, 465 (1991)

    Google Scholar 

  85. Poudeu, P.F.P., D’Angelo, J., Downey, A.D., Short, J.L., Hogan, T.P., Kanatzidis, M.G.: High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−xPbmSbyTem+2. Angew. Chem. Int. Ed. 45, 3835–3839 (2006)

    Google Scholar 

  86. Biswas, K., He, J., Wang, G., Lo, S.-H., Uher, C., Dravid, V.P., Kanatzidis, M.G.: High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba). Energy Environ. Sci. 4, 4675–4684 (2011)

    Google Scholar 

  87. Ahn, K., Han, M.K., He, J., Androulakis, J., Balikaya, S., Uher, C., Dravid, V.K., Kanatzidis, M.G.: Exploring resonance levels and nanostructuring in the PbTe − CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 132, 5227 (2010)

    Google Scholar 

  88. Ikeda, T., Ravi, V.A., Snyder, G.J.: Formation of Sb2Te3 Widmanstätten precipitates in thermoelectric PbTe. Acta Mater. 57, 666 (2009)

    Google Scholar 

  89. Ikeda, T., Collins, L., Ravi, V.A., Gascoin, F., Haile, S.M., Snyder, G.J.: Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19(4), 763–767 (2007)

    Google Scholar 

  90. Song, S., Jipeng, F., Li, X., Gao, W., Zhang, H.: Facile synthesis and thermoelectric properties of self-assembled Bi2Te3 one-dimensional nanorod bundles. Chem. Eur. J. 19, 2889–2894 (2013)

    Google Scholar 

  91. Jipeng, F., Song, S., Zhang, X., Cao, F., Zhou, L., Li, X., Zhang, H.: Bi2Te3 nanoplates and nanoflowers: synthesized by hydrothermal process and their enhanced thermoelectric properties. CrystEngComm 14, 2159–2165 (2012)

    Google Scholar 

  92. Dong, G.-H., Zhu, Y.-J.: Room-temperature solution synthesis of Ag2Te hollow microspheres and dendritic nanostructures, and morphology dependent thermoelectric properties. CrystEngComm 14(1805) (2012)

    Google Scholar 

  93. Li, D.Y., Wu, Y.Y., Fan, R., Yang, P.D., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)

    Google Scholar 

  94. Lin, Y.M., Dresselhaus, M.S.: Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003)

    Google Scholar 

  95. Wu, Y., Yan, H., Huang, M., Messer, B., Song, J.H., Yang, P.: Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chem. Eur. J. 8, 1261–1268 (2002)

    Google Scholar 

  96. Ohtakil, M., Hayashi, R.: Enhanced thermoelectric performance of nanostructured zno: a possibility of selective phonon scattering and carrier energy filtering by nanovoid structure. Paper presented at 25th international conference on thermoelectrics, Vienna, Austria, 6–10 Aug 2006

    Google Scholar 

  97. Ohtaki, M., Maehara, S. Shige, S.: Thermoelectric properties of Al-doped ZnO sintered with nanosized void forming agents. In: Twenty-second international conference on thermoelectrics, proceedings Ict '03, pp 171–174 (2003)

    Google Scholar 

  98. Kim, K.H., Shim, S.H., Shim, K.B., Niihara, K., Hojo, J.: Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. J. Am. Ceram. Soc. 88, 628–632 (2005)

    Google Scholar 

  99. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  100. Tsubota, T., Ohtaki, M., Eguchi, K., Arai, H.: Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion copy. J. Mater. Chem. 7, 85–90 (1997)

    Google Scholar 

  101. Cai, K.F., Müller, E., Drašar, C., Mrotzek, A.: Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mater. Sci. Eng. B 104, 45–48 (2003)

    Google Scholar 

  102. Ohtaki, M., Araki, K., Yamamoto, K.: High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234–1238 (2009)

    Google Scholar 

  103. Shirouzu, K., Ohkusa, T., Hotta, M., Enomoto, N., Hojo, J.: Distribution and solubility limit of Al in Al2O3-doped ZnO sintered body. J. Ceram. Soc. Jpn. 115, 254–258 (2007)

    Google Scholar 

  104. Zou, J., Balandin, A.: Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001)

    Google Scholar 

  105. Kulkarni, A.J., Zhou, M.: Size-dependent thermal conductivity of zinc oxide nanobelts. Appl. Phys. Lett. 88, 141921 (2006)

    Google Scholar 

  106. Rajalakshmi, M., Arora, A.K., Bendre, B.S., Mahamuni, S.: Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 87, 2445–2448 (2000)

    Google Scholar 

  107. Fonoberov, V.A., Balandin, A.A.: Interface and confined polar optical phonons in spherical ZnO quantum dots with wurtzite crystal structure. Phys. Status Solidi C 1, 2650–2653 (2004)

    Google Scholar 

  108. Fonoberov, V.A., Balandin, A.A.: Interface and confined optical phonons in wurtzite nanocrystals. Phys. Rev. B 70, 233205 (2004)

    Google Scholar 

  109. Itahara, H., Seo, W.S., Lee, S., Nozaki, H., Tani, T., Koumoto, K.: The formation mechanism of a textured ceramic of thermoelectric [Ca2CoO3]0.62[CoO2] on β-Co(OH)2 templates through in situ topotactic conversion. J. Am. Chem. Soc. 127, 6367–6373 (2005)

    Google Scholar 

  110. Koumoto, K., Wang, Y.F., Zhang, R.Z., Kosuga, A., Funahashi, R.: Oxide thermoelectric materials—a nanostructuring approach. Annu. Rev. Mater. Res. 40, 363–396 (2010)

    Google Scholar 

  111. Muta, H., Kurosaki, K., Yamanaka, S.: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292–295 (2003)

    Google Scholar 

  112. U.S. Department of Energy: Critical materials strategy. http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf(2011). Accessed 23 Dec 2011

  113. Ohtaki, M., Ogura, D., Eguchi, K., Arai, H.: High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation. J. Mater. Chem. 4, 653–656 (1994)

    Google Scholar 

  114. Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., Arai, H.: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105–111 (1995)

    Google Scholar 

  115. Li, S., Funahashi, R., Matsubara, I., Ueno, K., Yamada, H.: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659–1660 (1999)

    Google Scholar 

  116. Masuda, Y., Nagahama, D., Itahara, H., Tani, T., Seo, W.S., Koumoto, K.: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13, 1094–1099 (2003)

    Google Scholar 

  117. Zhang, Y.F., Zhang, J.X., Liu, Q.M.: Rapid synthesis of Ca2Co2O5 textured ceramics by coprecipitation method and spark plasma sintering. J. Alloys Compd. 399, 64–68 (2005)

    Google Scholar 

  118. Wang, Y., Sui, Y., Cheng, J., Wang, X., Su, W.: Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd. 477, 817–821 (2009)

    Google Scholar 

  119. Zhao, Y., et al.: Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics. J. Appl. Phys. 112, 034313 (2012)

    Google Scholar 

  120. Lee, K.H., Kim, S.W., Ohta, H., Koumoto, K.: Ruddlesden-Popper phases as thermoelectric oxides—Nb-doped SrO(SrTiO3)n (n = 1,2). J. Appl. Phys. 100, 063717 (2006)

    Google Scholar 

  121. Wang, Y., Lee, K., Ohta, H., Koumoto, K.: 103-Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1,2) ceramics. J. Appl. Phys. 105, 103701 (2009)

    Google Scholar 

  122. Chung, D.Y., et al.: A new thermoelectric material: CsBi4Te6. J. Am. Chem. Soc. 126, 6414–6428 (2004)

    Google Scholar 

  123. Kurosaki, K., Kosuga, A., Muta, H., Uno, M., Yamanaka, S.: Ag9TlTe5-a high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005)

    Google Scholar 

  124. Shi, X., Yang, J., Salvador, J.R., Chi, M., Cho, J.Y., Wang, H., Bai, S., Yang, J., Zhang, W., Chen, L.D.: Multiple-filled skutterudites high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Google Scholar 

  125. Zhao, W.Y., Wei, P., Zhang, Q.J., Dong, C.L., Liu, L.S., Tang, X.F.: Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization inducted by indium filler. J. Am. Chem. Soc. 131, 3713–3720 (2009)

    Google Scholar 

  126. Brown, S.R., Kauzlarich, S.M., Gascoin, F., Snyder, G.J.: Yb14MnSb11-new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006)

    Google Scholar 

  127. Caillat, T., Fleurial, J.-P., Borshchevsky, A.: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58, 1119–1125 (1997)

    Google Scholar 

  128. Saramat, A., Svensson, G., Palmqvist, A.E.C., Stiewe, C., Mueller, E., Platzek, D., Williams, S.G.K., Rowe, D.M., Bryan, J.D., Stucky, G.D.: Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J. Appl. Phys. 99, 023708 (2006)

    Google Scholar 

  129. Sakurada, S., Shutoh, N.: Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 86, 082105 (2005)

    Google Scholar 

  130. Liu, H.L., Shi, X., Xu, F.F., Zhang, L.L., Zhang, W.Q., Chen, L.D., Li, Q., Uher, C., Day, T., Snyder, G.J.: Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors (Y. Z. and S. P.) gratefully acknowledge the financial support provided by NSF/DOE Thermoelectrics Partnership. The author (A. K.) would also like to acknowledge the support from the CEHMS seed program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Kumar, A., Hin, C., Priya, S. (2014). Nanoscale Self-assembled Oxide Bulk Thermoelectrics. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics