Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1029 Accesses

Abstract

In this chapter the experimental results of this thesis will be shown and the related analysis explained. Four topological insulator crystals (\(\mathrm{{Bi}}_2\mathrm{{Se}}_3\), \(\mathrm{{Bi}}_{2-x}\mathrm{{Ca}}_x\mathrm{{Se}}_3\), \(\mathrm{{Bi}}_2\mathrm{{Se}}_2\mathrm{{Te}}\) and \(\mathrm{{Bi}}_2\mathrm{{Te}}_2\mathrm{{Se}}\)) have been optically studied by FTIR Spectroscopy, with increasing chemical compensation. They have been measured from 5 to 300 K and from subterahertz to visible frequencies. The effect of compensation is clearly observed in the infrared spectra through the suppression of the extrinsic Drude term together with the appearance of strong absorption peaks, that we assign to electronic transitions among localized impurities states. From the far-infrared spectral weight of the most compensated sample (\(\mathrm{{Bi}}_2\mathrm{{Te}}_2\mathrm{{Se}}\)), one can estimate a density of charge carriers on the order of \(10^{17}\) cm\(10^{-3}\) in good agreement with transport data. Those results demonstrate that the low electrodynamics in single crystals of TI, even at the highest degree of compensation presently achieved, is still influenced by three-dimensional charge excitations. Its spectral weight is, indeed, still nearly higher by two orders of magnitude than that expected from the topological surface states, estimated from optical conductivity of films of \(\mathrm{{Bi}}_2\mathrm{{Se}}_3\) on sapphire substrate. Such films have been measured in the sub-THz and THz frequency region, in order to study their optical conductivity as a function of their thickness. One can observe no appreciable change in the free carriers contribution, while the \(\alpha \) phonon intensity strongly decreases with decreasing thickness, demonstrating that the only contribution to the transport is due to surface carriers, not depending on bulk characteristics.The surface metallic state of the thin TI films has been finally studied by patterning the films by a grating, as explained in Chap. 2. This provides the possibility to detect surface plasmonic collective modes, due to the excitation of two dimensional charge density waves along the topological interface of the samples. In the last part of this thesis those plasmons will be analyzed, demonstrating that they have two dimensional nature characteristic of 2DEGs (see Sect. 1.2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The upper limit for the measured frequency region is due to the transparency window of the substrate.

References

  1. D.-X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, N.P. Ong, Science 329, 821 (2010)

    Google Scholar 

  2. A.D. LaForge, A. Frenzel, B.C. Pursley, T. Lin, X. Liu, J. Shi, D.N. Basov, Phys. Rev. B 81, 125120 (2010)

    Article  ADS  Google Scholar 

  3. N.P. Butch, K. Kirshenbaum, P. Syers, A.B. Sushkov, G.S. Jenkins, H.D. Drew, J. Paglione, Phys. Rev. B 81, 241301(R) (2010)

    Google Scholar 

  4. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, R.J. Cava, Phys. Rev. B 79, 195208 (2009)

    Article  ADS  Google Scholar 

  5. E.M. Black, E.M. Conwell, L. Seigle, C.W. Spence Phys, Chem. Sol. 2, 240 (1957)

    Article  Google Scholar 

  6. W. Richter, H. Köler, C.R. Becker, Phys. Stat. Sol. (b) 84, 619 (1977)

    Google Scholar 

  7. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  8. Z. Ren, A.A. Taskin, S. Sasaki, K. Segawa, Y. Ando, Phys. Rev. B 82, 241306(R) (2010)

    Google Scholar 

  9. J. Xiong, Y. Luo, Y. Khoo, S. Jia, R.J. Cava, N.P. Ong, Physica E: Low-dimensional Systems and Nanostructures 44(5) 920 (2012)

    Google Scholar 

  10. Shuang Jia Huiwen Ji, E. Climent-Pascual, M.K. Fuccillo, M.E. Charles, J. Xiong, N.P. Ong, R.J. Cava, Phys. Rev. B 84, 235206 (2011)

    Article  ADS  Google Scholar 

  11. P. Di Pietro, F.M. Vitucci, D. Nicoletti, L. Baldassarre, P. Calvani, R. Cava, Y.S. Hor, U. Schade, S. Lupi, Phys. Rev. B 86, 045439 (2012)

    Article  ADS  Google Scholar 

  12. D.L. Greenaway, G. Harbeke, J. Phys. Chem. Solids 26, 1585 (1965)

    Article  ADS  Google Scholar 

  13. R. Vilaplana, D. Santamaría-Pérez, O. Gomis, F. J. Manjón, J. González, A. Segura, A. Muñoz, P. Rodríguez-Hernández, E. Pérez-Gonzéalez, V. Marín-Borrás, V. Muñoz-Sanjose, C. Drasar, V. Kucek, Phys. Rev. B 84, 184110 (2011)

    Google Scholar 

  14. H. Köhler, C.R. Becker, Physica status solidi (b) 61(2), 533 (1974)

    Article  ADS  Google Scholar 

  15. A. Gaymann, H.P. Geserich, H.V. Lohneysen, Phys. Rev. B 52 16486 (1995)

    Google Scholar 

  16. G.A. Thomas, M. Capizzi, F. DeRosa, R.N. Bhatt, T.M. Rice Phys, Rev. B 23, 5472 (1981)

    Article  Google Scholar 

  17. N.F. Mott, Metal-insulator transitions (Taylor and Francis, London, 1990)

    Google Scholar 

  18. Y.S. Kim, M. Brahlek, N. Bansal, E. Edrey, G.A. Kapilevich, K. Iida, M. Tanimura, Y. Horibe, S.-W. Cheong, S. Oh, Phys. Rev. B 84, 073109 (2011)

    Article  ADS  Google Scholar 

  19. A. Damascelli, K. Schulte, D. van der Marel, A.A. Menovsky, Phys. Rev. B 55, R4863 (1997)

    Article  ADS  Google Scholar 

  20. S. Lupi, M. Capizzi, P. Calvani, B. Ruzicka, P. Maselli, P. Dore, A. Paolone, Phys. Rev. B 57, 1248 (1998)

    Article  ADS  Google Scholar 

  21. R. Valdés Aguilar, A.V. Stier, W. Liu, L.S. Bilbro, D.K. George, N. Bansal, L. Wu, J. Cerne, A.G. Markelz, S. Oh, N.P. Armitage, Phys. Rev. Lett. 108, 087403 (2012)

    Google Scholar 

  22. N. Bansal, Y.S. Kim, M. Brahlek, E. Edrey, S. Oh, Phys. Rev. Lett. 109, 116804 (2012)

    Article  ADS  Google Scholar 

  23. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  24. P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, S. Lupi, Nat. Nanotechnol. 8, 556–560 (2013)

    Google Scholar 

  25. E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss, Phys. Rev. B 29, 1907 (1984)

    Google Scholar 

  26. R. Valdés Aguilar, A.V. Stier, W. Liu, L.S. Bilbro, D.K. George, N. Bansal, L. Wu, J. Cerne, A.G. Markelz, S. Oh, N.P. Armitage, Supplemental Materials for: Phys. Rev. Lett. 108, 087403 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Di Pietro .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Pietro, P. (2014). Results and Analysis. In: Optical Properties of Bismuth-Based Topological Insulators. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01991-8_3

Download citation

Publish with us

Policies and ethics