Skip to main content

Molecular Engineering of Efficient Dyes for p-Type Semiconductor Sensitization

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 190))

Abstract

Dye-sensitized solar cells (DSCs) based on p-type semiconductors such as nickel oxide have attracted considerable attention during the past 5 years. In this chapter, we focus on the progress related to improving p-DSC efficiency with the sensitizer. First, we summarize the specificities of p-DSC relative to conventional Grätzel cells, and then we establish the requirements for an efficient sensitizer. Second, we review all the results on published dyes and discuss the strategy for improvements. The molecular design principles of the dyes are also presented in order to pave the way and stimulate new directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2007)

    Article  Google Scholar 

  2. Balzani, V., Credi, A., et al.: Photochemical conversion of solar energy. ChemSusChem 1, 26–58 (2008)

    Article  CAS  Google Scholar 

  3. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  4. Hagfeldt, A., Boschloo, G., et al.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  CAS  Google Scholar 

  5. Odobel, F., Pellegrin, Y., et al.: Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coord. Chem. Rev. 256, 2414–2423 (2012)

    Article  CAS  Google Scholar 

  6. Odobel, F., Le Pleux, L., et al.: New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res. 43, 1063–1071 (2010)

    Article  CAS  Google Scholar 

  7. He, J., Lindström, H., et al.: Dye-sensitized nanostructured tandem cell—first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 62, 265–273 (2000)

    Article  CAS  Google Scholar 

  8. Nakasa, A., Usami, H., et al.: A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chem. Lett. 34, 500–501 (2005)

    Article  CAS  Google Scholar 

  9. Gibson, E.A., Smeigh, A.L., et al.: A p-type NiO-based dye-sensitized solar cell with a Voc of 0.35 V. Angew. Chem. Int. Ed. 48, 4402–4405 (2009)

    Article  CAS  Google Scholar 

  10. Nattestad, A., Mozer, A.J., et al.: Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 9, 31–35 (2010)

    Article  CAS  Google Scholar 

  11. Li, L., Duan, L., et al.: Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun. 48, 988–990 (2012)

    Article  CAS  Google Scholar 

  12. Tong, L., Iwase, A., et al.: Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy Environ. Sci. 5, 9472–9475 (2012)

    Article  CAS  Google Scholar 

  13. He, J., Lindström, H., et al.: Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B 103, 8940–8943 (1999)

    Article  CAS  Google Scholar 

  14. Borgström, M., Blart, E., et al.: Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. J. Phys. Chem. B 109, 22928–22934 (2005)

    Article  Google Scholar 

  15. Morandeira, A., Boschloo, G., et al.: Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. J. Phys. Chem. B 109, 19403–19410 (2005)

    Article  CAS  Google Scholar 

  16. Splan, K.E., Massari, A.M., et al.: A porous multilayer dye-based photoelectrochemical cell that unexpectedly runs in reverse. J. Phys. Chem. B 108, 4111–4115 (2004)

    Article  CAS  Google Scholar 

  17. Boschloo, G., Hagfeldt, A.: Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009)

    Article  CAS  Google Scholar 

  18. Morandeira, A., Boschloo, G., et al.: Coumarin 343-NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I3/I redox couple and mechanism of photocurrent generation. J. Phys. Chem. C 112, 9530–9537 (2008)

    Article  CAS  Google Scholar 

  19. Boschloo, G., Gibson, E.A., et al.: Photomodulated voltammetry of iodide/triiodide redox electrolytes and its relevance to dye-sensitized solar cells. J. Phys. Chem. Lett. 2, 3016–3020 (2011)

    Article  CAS  Google Scholar 

  20. Morandeira, A., Fortage, J., et al.: Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J. Phys. Chem. C 112, 1721–1728 (2008)

    Article  CAS  Google Scholar 

  21. Qin, P., Wiberg, J., et al.: Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. J. Phys. Chem. C 114, 4738–4748 (2010)

    Article  CAS  Google Scholar 

  22. Huang, Z., Natu, G., et al.: Probing the low fill factor of NiO p-type dye-sensitized solar cells. J. Phys. Chem. C 116, 26239–26246 (2012)

    Article  CAS  Google Scholar 

  23. Pellegrin, Y., Le Pleux, L., et al.: Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: effects of the anchoring groups. J. Photochem. Photobiol. A 219, 235–242 (2011)

    Article  CAS  Google Scholar 

  24. Mishra, A., Fischer, M.K.R., et al.: Metal-Free organic dyes for dye-sensitized solar cells: from structure: Property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009)

    CAS  Google Scholar 

  25. Smeigh, A.L., Pleux, L.L., et al.: Ultrafast recombination for NiO sensitized with a series of perylene imide sensitizers exhibiting Marcus normal behaviour. Chem. Commun. 48, 678–680 (2012)

    Article  CAS  Google Scholar 

  26. Jortner, J., Ratner, M.: Molecular Electronics. Blackwell Science, London (1997)

    Google Scholar 

  27. Bonhôte, P., Moser, J.-E., et al.: Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads. J. Am. Chem. Soc. 121, 1324–1336 (1999)

    Article  Google Scholar 

  28. Uehara, S., Sumikura, S., et al.: Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy Environ. Sci. 3, 641–644 (2010)

    Article  CAS  Google Scholar 

  29. Natu, G., Huang, Z., et al.: The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells. Langmuir 28, 950–956 (2011)

    Article  Google Scholar 

  30. Vera, F., Schrebler, R., et al.: Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films 490, 182–188 (2005)

    Article  CAS  Google Scholar 

  31. Nattestad, A., Ferguson, M., et al.: Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology 19, 295304/295301–295304/295309 (2008)

    Article  Google Scholar 

  32. Gibson, E.A., Le-Pleux, L., et al.: The role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells. Langmuir 28(15), 6485–6493 (2012)

    Article  CAS  Google Scholar 

  33. Le Pleux, L., Smeigh, A.L., et al.: Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells. Energy Environ. Sci. 4, 2075–2084 (2011)

    Article  Google Scholar 

  34. Gosztola, D., Niemczyk, M.P., et al.: Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J. Phys. Chem. A 104, 6545–6551 (2000)

    Article  CAS  Google Scholar 

  35. Feihl, S., Costa, R.D., et al.: Nickel oxide nanostructured electrodes towards perylenediimide-based dye-sensitized solar cells. RSC Adv. 2, 11495–11503 (2012)

    Article  CAS  Google Scholar 

  36. Bian, Z., Tachikawa, T., et al.: Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 layers. Chem. Sci. 3, 370–379 (2012)

    Article  CAS  Google Scholar 

  37. Sumikura, S., Mori, S., et al.: Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J. Photochem. Photobiol. A 194, 143–147 (2008)

    Article  CAS  Google Scholar 

  38. Mori, S., Fukuda, S., et al.: Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C 112, 16134–16139 (2008)

    Article  CAS  Google Scholar 

  39. Mishra, A., Behera, R.K., et al.: Cyanines during the 1990s: a review. Chem. Rev. 100, 1973–2012 (2000)

    Article  CAS  Google Scholar 

  40. Li, L., Gibson, E.A., et al.: Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater. 22, 1759–1762 (2010)

    Article  CAS  Google Scholar 

  41. Qin, P., Linder, M., et al.: High incident photon-to-current conversion efficiency of p-type dye-sensitized solar cells based on NiO and organic chromophores. Adv. Mater. 21, 2993–2996 (2009)

    Article  CAS  Google Scholar 

  42. Qin, P., Zhu, H., et al.: Design of an organic chromophore for p-type dye-sensitized solar cells. J. Am. Chem. Soc. 130, 8570–8571 (2008)

    Article  CAS  Google Scholar 

  43. Zhu, L., Yang, H., et al.: Modified triphenylamine-dicyanovinyl-based donor–acceptor dyes with enhanced power conversion efficiency of p-type dye-sensitized solar cells. Chem. Asian J. 7, 2791–2795 (2012)

    Article  CAS  Google Scholar 

  44. Yen, Y.-S., Chen, W.-T., et al.: Arylamine-based dyes for p-type dye-sensitized solar cells. Org. Lett. 13, 4930–4933 (2011)

    Article  CAS  Google Scholar 

  45. Hsu, C.-Y., Chen, W.-T., et al.: Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochim. Acta 66, 210–215 (2012)

    Article  CAS  Google Scholar 

  46. Natu, G., Hasin, P., et al.: Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4(11), 5922–5929 (2012)

    Article  CAS  Google Scholar 

  47. Chang, C.-H., Chen, Y.-C., et al.: Squaraine-arylamine sensitizers for highly efficient p-type dye-sensitized solar cells. Org. Lett. 14, 4726–4729 (2012)

    Article  CAS  Google Scholar 

  48. Freys, J.C., Gardner, J.M., et al.: Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell. Dalton Trans. 41, 13105–13111 (2012)

    Article  CAS  Google Scholar 

  49. Ji, Z., Natu, G., et al.: Synthesis, photophysics, and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dye-sensitized solar cells. J. Phys. Chem. C 116, 16854–16863 (2012)

    Article  CAS  Google Scholar 

  50. Balzani, V., Juris, A., et al.: Luminescent and redox-active polynuclear transition metal complexes. Chem. Rev. 96, 759–834 (1996)

    Article  CAS  Google Scholar 

  51. Campagna, S., Puntoriero, F., et al.: Photochemistry and photophysics of coordination compounds: ruthenium. In: Balzani, V., Campagna, S. (eds.) Photochemistry and Photophysics of Coordination Compounds I, vol. 280, pp. 117–214. Springer, Berlin (2007)

    Chapter  Google Scholar 

  52. Gibson, E.A., Smeigh, A.L., et al.: Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. J. Phys. Chem. C 115, 9772–9779 (2011)

    Article  CAS  Google Scholar 

  53. Zhang, X.L., Huang, F., et al.: Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chem. Commun. 47, 4808–4810 (2011)

    Article  CAS  Google Scholar 

  54. Weidelener, M., Mishra, A., et al.: Synthesis and characterization of perylene-bithiophene-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. J. Mater. Chem. 22, 7366–7379 (2012)

    Article  CAS  Google Scholar 

  55. Zhang, X.L., Zhang, Z., et al.: Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem. Commun. 48, 9885–9887 (2012)

    Article  CAS  Google Scholar 

  56. Zhang, X.L., Zhang, Z., et al.: Charge transport in photocathodes based on the sensitization of NiO nanorods. J. Mater. Chem. 22, 7005–7009 (2012)

    Article  CAS  Google Scholar 

  57. Powar, S., Daeneke, T., et al.: Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(II)/(III) electrolytes. Angew. Chem. Int. Ed. 125, 630–633 (2013)

    Article  Google Scholar 

  58. Chavhan, S.D., Abellon, R.D., et al.: Sensitization of p-type NiO using n-type conducting polymers. J. Phys. Chem. C 114, 19496–19502 (2010)

    Article  CAS  Google Scholar 

  59. Ji, Z., Natu, G., et al.: Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells. Energy Environ. Sci. 4, 2818–2821 (2011)

    Article  CAS  Google Scholar 

  60. Chan, X.-H., Jennings, J.R., et al.: Characteristics of p-NiO thin films prepared by spray photocathodes pyrolysis and their application in CdS-sensitized. J. Electrochem. Soc. 158, H733–H740 (2011)

    Article  CAS  Google Scholar 

  61. Safari-Alamuti, F., Jennings, J.R., et al.: Conformal growth of nanocrystalline CdX (X = S, Se) on mesoscopic NiO and their photoelectrochemical properties. Phys. Chem. Chem. Phys. 15, 4767–4774 (2013)

    Article  CAS  Google Scholar 

  62. Mao, Y.-Q., Zhou, Z.-J., et al.: P-type CoO nanowire arrays and their application in quantum dot-sensitized solar cells. RSC Adv. 3, 1217–1221 (2013)

    Article  CAS  Google Scholar 

  63. Kang, S.H., Zhu, K., et al.: Hole transport in sensitized CdS-NiO nanoparticle photocathodes. Chem. Commun. 47, 10419–10421 (2011)

    Article  CAS  Google Scholar 

  64. Wu, X., Yeow, E.K.L.: Charge-transfer processes in single CdSe/ZnS quantum dots with p-type NiO nanoparticles. Chem. Commun. 46, 4390–4392 (2010)

    Article  CAS  Google Scholar 

  65. Renaud, A., Chavillon, B., et al.: CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 22, 14353–14356 (2012)

    Article  CAS  Google Scholar 

  66. Yu, M., Natu, G., et al.: p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 3, 1074–1078 (2012)

    Article  CAS  Google Scholar 

  67. Xiong, D., Xu, Z., et al.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22, 24760–24768 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the “Région Pays de la Loire” for the program PERLE1&2 and NiOPhotoCat and the ANR-Progelec agency (program POSITIF n° ANR-12-PRGE-0016-01). F.B.A. is indebted to the Région des Pays de la Loire for his PhD grant. D.J. acknowledges both the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grant (Marches—278845) and a recrutement sur poste stratégique, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Odobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Odobel, F., Pellegrin, Y., Anne, F.B., Jacquemin, D. (2014). Molecular Engineering of Efficient Dyes for p-Type Semiconductor Sensitization. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_8

Download citation

Publish with us

Policies and ethics