Skip to main content

Emerging PV Nanomaterials: Capabilities Versus Recombination Losses

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 190))

Abstract

Suppressing recombination processes and improving the minority carrier lifetime are critical for enhancing the performance of solar cells. Analysis of the balance between generation, recombination, and transport and its effect on the photocurrent and open circuit voltage of solar cells as well as a review of modern approaches employed to overcome the Shockley–Queisser limit are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  2. Luque, A., Hegedus, S. (eds.): Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, New York (2003)

    Google Scholar 

  3. Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim, Germany (2005)

    Book  Google Scholar 

  4. Luque, A., Martı, A.: Increasing the efficiency of ideal solar cells by photon induced transition at intermediate levels. Phys. Rev. Lett. 78, 5014 (1997)

    Article  CAS  Google Scholar 

  5. Nozik, A.J.: Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735 (2010)

    Article  CAS  Google Scholar 

  6. Semonin, O.E., Luther, J.M., Choi, S., Chen, H.Y., Gao, J., Nozik, A.J., Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530 (2011)

    Article  CAS  Google Scholar 

  7. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)

    Article  CAS  Google Scholar 

  8. Queisser, H.: Photovoltaic conversion at reduced dimensions. Phys. E 14, 1 (2002)

    Article  Google Scholar 

  9. Bonch-Bruevich, V.L., Landsberg, E.G.: Recombination mechanisms. Phys. Stat. Sol. (b) 29, 1 (1968)

    Google Scholar 

  10. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons Inc., New York (1981)

    Google Scholar 

  11. Rogalski, A., Adamiec, K., Rutkowski, J.: Narrow-Gap Semiconductor Photodiodes. SPIE Press, Bellingham (2000)

    Google Scholar 

  12. Schroder, D.K.: Semiconductor Material and Device Characterization, 2nd edn. John Wiley & Sons Inc., New York (1998)

    Google Scholar 

  13. Dumke, W.P.: Spontaneous radiative recombination in semiconductors. Phys. Rev. 105, 139–144 (1957)

    Article  CAS  Google Scholar 

  14. ‘t Hooft, G.W.: The radiative recombination coefficient of GaAs from laser delay measurements and effective nonradiative carrier lifetimes. Appl. Phys. Lett. 39, 389 (1981)

    Article  Google Scholar 

  15. Landsberg, P.T.: Recombination in Semiconductors. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  16. Shockley, W.: Electrons and Holes in Semiconductors. D. Van Nostrand, Princeton, NJ (1950)

    Google Scholar 

  17. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  CAS  Google Scholar 

  18. Mills, O.D., Yablonovitch, E., Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2, 3 (2012)

    Google Scholar 

  19. Streetman, B.G.: Solid State Electronic Devices, p. 07632. Prentice-Hall, Inc, Englewood Cliffs, NJ (1980)

    Google Scholar 

  20. Sah, C.-T.T., Noyce, R.N., Shockley, W.: Carrier generation and recombination in pn junctions and p-n junction characteristics. Proc. IRE 45, 9 (1957)

    Article  Google Scholar 

  21. Colinge, J.-P., Colinge, C.A.: Physics of Semiconductor Devices, 2nd edn. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  22. Palankovski, V., Quay, R.D.: Analysis and Simulation of Heterostructure Devices. Springer, New York (2004)

    Book  Google Scholar 

  23. Badescu, V., Landsberg, P.T.: Theory of some effects of photon recycling in semiconductors. Semicond. Sci. Technol. 3, 1267–1276 (1993)

    Article  Google Scholar 

  24. Asbeck, P.: Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures. J. Appl. Phys. 48, 820 (1977)

    Article  CAS  Google Scholar 

  25. Badescu, V., Landsberg, P.T.: Influence of photon recycling on solar cell efficiencies. Semicond. Sci. Technol. 12, 1491 (1997)

    Article  CAS  Google Scholar 

  26. Mattheis, J., Werner, J.H., Rau, U.: Finite mobility effects on the radiative efficiency limit of pn junction solar cells. Phys. Rev. B 77, 085203 (2008)

    Article  Google Scholar 

  27. Parrott, J.E.: Radiative recombination and photon recycling in photo-voltaic solar cells. Sol. Energy Mater. Sol. Cells 30, 221–231 (1993)

    Article  CAS  Google Scholar 

  28. Wang, J.-B., Zhang, Y.-H.: Increased power conversion efficiency through photon recycling in quantum well lasers. Phys. Stat. Sol. (c) 4, 5 (2007)

    Google Scholar 

  29. Addison, C.: “Oral history of Hans Queisser,” Computer History Museum (2006). (http://archive.computerhistory.org/resources/access/text/2012/07/10265805-05-01-acc.pdf)

  30. Green, M.A.: Third Generation Photovoltaics. Springer, Berlin (2003)

    Google Scholar 

  31. Markwart, T., Lansberg, P.T.: Thermodynamics and reciprocity of solar energy conversion. Phys. E 14, 71 (2002)

    Article  Google Scholar 

  32. Brown, A.S., Green, M.A., Corkish, R.P.: Limiting efficiency for a multi-band solar cell containing three and four bands. Physica E 14, 121 (2002)

    Article  CAS  Google Scholar 

  33. Matthews, I., O’Mahony, D., Corbett, B., Morrison, A.P.: Theoretical performance of multijunction solar cells combining III-V and Si materials. Opt. Express 20, 5 (2012)

    Article  Google Scholar 

  34. Kurtz, S., Meyers, D., Mcmahon, W.E., Geisz, J., Steiner, M.: A comparison of theoretical efficiencies of multijunction concentrator solar cells. Prog. Photovolt. Res. Appl. 16, 6 (2008)

    Article  Google Scholar 

  35. King, R., et al.: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007)

    Article  Google Scholar 

  36. Tobias, I., Luque, A.: Ideal efficiency of monolithic, series-connected multijunction solar cells. Prog. Photovolt. Res. Appl. 10, 323–329 (2002)

    Article  CAS  Google Scholar 

  37. Kim, S.-S., Na, S.-I., Jo, J., Kim, D.-Y., Nah, Y.-C.: Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93, 073307 (2008)

    Article  Google Scholar 

  38. Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391 (2008)

    Article  CAS  Google Scholar 

  39. Polman, A.: Plasmonics applied. Science 322, 868 (2008)

    Article  Google Scholar 

  40. Shalav, A., Richards, B.S., Green, M.A.: Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829 (2007)

    Article  CAS  Google Scholar 

  41. Richards, B.S.: Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90, 1189 (2006)

    Article  CAS  Google Scholar 

  42. Pi, X.D., Zhang, L., Yang, D.: Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. J. Phys. Chem. C 116, 21240 (2012)

    Article  CAS  Google Scholar 

  43. Marti, A., Balenzategui, J.L., Reyna, R.R.: Phonon recycling and Shockley’s diode equation. J. Appl. Phys. 82, 4067 (1997)

    Article  CAS  Google Scholar 

  44. Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. IRE 48, 1246 (1960)

    Article  Google Scholar 

  45. Luque, A., Marti, A.: The intermediate band solar cell: progress toward the realization of an attractive concept. Adv. Mater. 22, 160 (2010)

    Article  CAS  Google Scholar 

  46. Zhou, D., Vullum, P.E., Sharma, G., Thomassen, S.F., Holmestad, R., Reenaas, T.W., Fimland, B.O.: Positioning effects on quantum dot solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 96, 083108 (2010)

    Article  Google Scholar 

  47. Hubbard, S.M., Cress, C.D., Bailey, C.G., Raffaelle, R.P., Bailey, S.G., Wilt, D.M.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92, 123512 (2008)

    Article  Google Scholar 

  48. Oshima, R., Takata, A., Okada, Y.: Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Appl. Phys. Lett. 93, 083111 (2008)

    Article  Google Scholar 

  49. Ross, R.T., Nozik, A.J.: Efficiency of hot-carrier splar energy comverters. J. Appl. Phys. 53, 3813 (1982)

    Article  CAS  Google Scholar 

  50. Würfel, P.: Solar energy conversion with hot electrons from impact ionization. Sol. Energy Mater. Sol. Cells 46, 43 (1997)

    Article  Google Scholar 

  51. Kempa, K., Naughton, M.J., Ren, Z.F., Herczynski, A., Kirkpatrick, T., Rybczynski, J., Gao, Y.: Hot electron effect in nanoscopically thin photovoltaic junctions. Appl. Phys. Lett. 95, 233121 (2009)

    Article  Google Scholar 

  52. Schaller, R., Klimov, V.: High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  CAS  Google Scholar 

  53. Semonin, O.E., Luther, J.M., Beard, M.C.: Quantum dots for next generation photovoltaics. Mater. Today 15, 508 (2012)

    Article  CAS  Google Scholar 

  54. Nair, G., Chang, L.Y., Geyer, S.M., Bawendi, M.G.: Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 11, 5 (2011)

    Google Scholar 

  55. Sablon, K.A., Little, J.W., Mitin, V., Sergeev, A., Vagidov, N., Reinhardt, K.: Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett. 11, 2311–2317 (2011)

    Article  CAS  Google Scholar 

  56. Sablon, K., Sergeev, A., Vagidov, N., Antipov, A., Little, J., Mitin, V.: Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge. Nanoscale Res. Lett. 6, 584-1–584-13 (2011)

    Article  Google Scholar 

  57. Sablon, K.A., Sergeev, A., Vagidov, N., Little, J.W., Mitin, V.: Effects of quantum dot charging on photoelectron processes and solar cell characteristics. Sol. Energy Mater. Sol. Cells; published on line: http://dx.doi.org/10.1016/j.solmat.2012.10.002.

  58. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, F.P., Gatti, F., Koppens, F.H.L.: Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363 (2012)

    Article  CAS  Google Scholar 

  59. Siegert, J., Marcinkeviˇcius, S., Zhao, Q.X.: Carrier relaxation and electronic structure in InAs self-assembled quantum dots. Phys. Rev. B 72, 085316-1–085316-7 (2005)

    Article  Google Scholar 

  60. Adler, F., Geiger, M., Bauknecht, A., Scholz, F., Schweizer, H., Pilkuhn, M.H., Ohnesorge, B., Forchel, A.: Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots. J. Appl. Phys. 80, 4019–4026 (1996)

    Article  CAS  Google Scholar 

  61. Schmidt, K.H., Medeiros-Ribeiro, G., Oestreich, M., Petroff, P.M., Döhler, G.H.: Carrier relaxation and electronic structure in InAs self-assembled quantum dots. Phys. Rev. B 54, 11346 (1996)

    Article  CAS  Google Scholar 

  62. Steer, M.J., Mowbray, D.J., Tribe, W.R., Skolnick, M.S., Sturge, M.D., Hopkinson, M., Cullis, A.G., Whitehouse, C.R., Murray, R.: Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. Phys. Rev. B 54, 17738 (1996)

    Article  CAS  Google Scholar 

  63. Chang, W.-H., Hsu, T.M., Huang, C.C., Hsu, S.L., Lai, C.Y., Yeh, N.T., Nee, T.E., Chyi, J.-I.: Photocurrent studies of the carrier escape process from InAs self-assembled quantum dots. Phys. Rev. B 62, 6959 (2000)

    Article  CAS  Google Scholar 

  64. Itskevitch, I.E., Skolnick, M.S., Mowbray, D.J., Trojan, I.A., Lyapin, S.G., Wilson, L.R., Steer, M.J., Hopkinson, M., Eaves, L., Main, P.C.: Excited states and selection rules in self-assembled InAs/GaAs quantum dots. Phys. Rev. B 54, R2185–R2188 (1999)

    Article  Google Scholar 

  65. Sergeev, A., Mitin, V., Strasser, G.: Nanostructures for long photoelectron lifetime. SPIE Newsroom, March 2010, http://spie.org/x39405.xml.

  66. Chien, L.-H., Sergeev, A., Mitin, V., Oktyabrsky, S.: Quantum dot photodetectors based on structures with collective potential barriers. Proc. SPIE 7608, 760826 (2010)

    Article  Google Scholar 

  67. Martí, A., Antolín, E., García Linares, P., Ramiro, I., Artach, I., López, E., Hernández, E., Mendes, M.J. Mellor, A., Tobías, I., Fuertes Marrón, D., Tablero, C., Cristóbal, A.B.., Bailey, C.G., Gonzalez, M., Yakes, M., Lumb, M.P., Walters, R., Luque, A.: Six not so easy pieces in intermediate band solar cell research. Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, 86200J, 25 Mar 2013.

    Google Scholar 

Download references

Acknowledgement

Special thanks to P. Wijewarnasuriya, J. Little, V. Mitin, and N. Vagidov for valuable discussions. The work described herein was supported by the ARO, AFOSR, and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Sablon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sablon, K.A., Sergeev, A. (2014). Emerging PV Nanomaterials: Capabilities Versus Recombination Losses. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_3

Download citation

Publish with us

Policies and ethics