Skip to main content

Plasmon-Enhanced Excitonic Solar Cells

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 190))

Abstract

The exciton dissociation in excitonic solar cells (XSCs) is controlled by interface, where the generated eletrons on one side and holes produced on the other side. In this device configuration, the interfacial characteristics are crucial for the operation, while the bulk property is less critical. Due to the unique characteristics of materials and operation mechanism, the fabrication of XSCs allows low-cost, large-scale solution processing, and the utilization of various printing techniques, instead of high-cost vacuum deposition and purification process applied in the fabrication of conventional p–n junction solar cells. To date, power conversion efficiencies exceeding 10 % have been achieved in some XSCs at lab scale. For the practical applications, the energy conversion efficiencies are required to be further improved, especially at module scale. In this chapter, we pay special attention to the recent development in the application of metal (e.g., Au and Ag) nanoparticles to increase the light utilization in XSCs for high photovoltaic conversion efficiency. This type of light trapping, on the ground of localized surface plasmon resonance and propagating surface plasmon polariton, provides an alternative approach to the development of new light absorbing materials to span the strong spectral response over broader ranges. The methodologies and enhancement mechanisms regarding a series of typical device architectures will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregg, B.A.: Excitonic solar cells. J. Phys. Chem. B 107(20), 4688–4698 (2003)

    Article  CAS  Google Scholar 

  2. Gregg, B.A.: The photoconversion mechanism of excitonic solar cells. MRS Bull. 30(1), 20–22 (2005)

    Article  CAS  Google Scholar 

  3. Chen, T., Hu, W., Song, J., Guai, G.H., Li, C.M.: Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Adv. Funct. Mater. 22(22), 5245–5250 (2012)

    Article  CAS  Google Scholar 

  4. Chang, S., Li, Q., Xiao, X., Wong, K.Y., Chen, T.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy Environ. Sci. 5, 9444–9448 (2012)

    Article  CAS  Google Scholar 

  5. Chen, T., Guai, G.H., Gong, C., Hu, W.H., Zhu, J.X., Yang, H.B., Yan, Q.Y., Li, C.M.: Thermoelectric Bi2Te3-improved charge collection for high-performance dye-sensitized solar cells. Energy Environ. Sci. 5(4), 6294–6298 (2012)

    Article  CAS  Google Scholar 

  6. Guai, G.H., Song, Q.L., Guo, C.X., Lu, Z.S., Chen, T., Ng, C.M., Li, C.M.: Graphene-counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Sol. Energy 86(7), 2041–2048 (2012)

    Article  CAS  Google Scholar 

  7. Yang, L., Leung, W.W.-F.: Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23(39), 4559–4562 (2011)

    Article  CAS  Google Scholar 

  8. Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008)

    Article  CAS  Google Scholar 

  9. Ghadiri, E., Taghavinia, N., Zakeeruddin, S.M., Grätzel, M., Moser, J.-E.: Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett. 10(5), 1632–1638 (2010)

    Article  CAS  Google Scholar 

  10. Bessho, T., Zakeeruddin, S.M., Yeh, C.Y., Diau, E.W.G., Gratzel, M.: Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. Engl. 49(37), 6646–6649 (2010)

    Article  CAS  Google Scholar 

  11. Kimura, M., Nomoto, H., Masaki, N., Mori, S.: Dye molecules for simple co-sensitization process: fabrication of mixed-dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 51(18), 4371–4374 (2012)

    Article  CAS  Google Scholar 

  12. Clifford, J.N., Martinez-Ferrero, E., Viterisi, A., Palomares, E.: Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem. Soc. Rev. 40(3), 1635–1646 (2011)

    Article  CAS  Google Scholar 

  13. Vougioukalakis, G.C., Philippopoulos, A.I., Stergiopoulos, T., Falaras, P.: Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. 255(21–22), 2602–2621 (2011)

    Article  CAS  Google Scholar 

  14. Gratzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11), 1788–1798 (2009)

    Article  CAS  Google Scholar 

  15. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)

    Article  CAS  Google Scholar 

  16. Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  CAS  Google Scholar 

  17. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.D.: Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    Article  CAS  Google Scholar 

  18. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)

    Article  CAS  Google Scholar 

  19. Hardin, B.E., Hoke, E.T., Armstrong, P.B., Yum, J.-H., Comte, P., Torres, T., Frechet, J.M.J., Nazeeruddin, M.K., Gratzel, M., McGehee, M.D.: Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nat. Photon 3(7), 406–411 (2009)

    Article  CAS  Google Scholar 

  20. Yella, A., Lee, H.W., Tsao, H.N., Yi, C.Y., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S.M., Gratzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011)

    Article  CAS  Google Scholar 

  21. You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.-C., Gao, J., Li, G., Yang, Y.: A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)

    Article  Google Scholar 

  22. Ito, S., Murakami, T.N., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M.K., Gratzel, M.: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516(14), 4613–4619 (2008)

    Article  CAS  Google Scholar 

  23. Thompson, B.C., Frechet, J.M.J.: Organic photovoltaics—polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008)

    Article  CAS  Google Scholar 

  24. Son, H.J., Carsten, B., Jung, I.H., Yu, L.: Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers. Energy Environ. Sci. 5(8), 8158–8170 (2012)

    Article  CAS  Google Scholar 

  25. Jorgensen, M., Norrman, K., Krebs, F.C.: Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 686–714 (2008)

    Article  Google Scholar 

  26. Zhao, D.W., Tan, S.T., Ke, L., Liu, P., Kyaw, A.K.K., Sun, X.W., Lo, G.Q., Kwong, D.L.: Optimization of an inverted organic solar cell. Sol. Energy Mater. Sol. Cell 94(6), 985–991 (2010)

    Article  CAS  Google Scholar 

  27. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  CAS  Google Scholar 

  28. Frank, A.J., Kopidakis, N., van de Lagemaat, J.: Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248(13–14), 1165–1179 (2004)

    Article  CAS  Google Scholar 

  29. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48(2), 183–185 (1986)

    Article  CAS  Google Scholar 

  30. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells-enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)

    Article  CAS  Google Scholar 

  31. Jiang, R., Chen, H., Shao, L., Li, Q., Wang, J.: Unraveling the evolution and nature of the plasmons in (Au Core)–(Ag Shell) nanorods. Adv. Mater. 24(35), OP200–OP207 (2012)

    Article  CAS  Google Scholar 

  32. Ni, W.H., Chen, H.J., Su, J., Sun, Z.H., Wang, J.F., Wu, H.K.: Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling. J. Am. Chem. Soc. 132(13), 4806–4814 (2010)

    Article  CAS  Google Scholar 

  33. Chen, H.J., Kou, X.S., Yang, Z., Ni, W.H., Wang, J.F.: Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10), 5233–5237 (2008)

    Article  CAS  Google Scholar 

  34. Kneipp, K., Kneipp, H., Kneipp, J.: Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess—from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39(7), 443–450 (2006)

    Article  CAS  Google Scholar 

  35. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)

    Article  CAS  Google Scholar 

  36. Tian, Z.Q., Ren, B., Wu, D.Y.: Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106(37), 9463–9483 (2002)

    Article  CAS  Google Scholar 

  37. Wiley, B., Sun, Y., Xia, Y.: Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40(10), 1067–1076 (2007)

    Article  CAS  Google Scholar 

  38. Wu, D., Xu, X., Liu, X.: Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells. Solid State Commun. 146(1–2), 7–11 (2008)

    Article  CAS  Google Scholar 

  39. Pillai, S., Green, M.A.: Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010)

    Article  CAS  Google Scholar 

  40. Bohren, C.F.: How can a particle absorb more than the light incident on it? Am. J. Phys. 51(4), 323–327 (1983)

    Article  CAS  Google Scholar 

  41. Mühlschlegel, P., Eisler, H.-J., Martin, O.J.F., Hecht, B., Pohl, D.W.: Resonant optical antennas. Science 308(5728), 1607–1609 (2005)

    Article  Google Scholar 

  42. Ditlbacher, H., Krenn, J.R., Schider, G., Leitner, A., Aussenegg, F.R.: Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81(10), 1762–1764 (2002)

    Article  CAS  Google Scholar 

  43. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Article  CAS  Google Scholar 

  44. Li, X.H., Choy, W.C.H., Huo, L.J., Xie, F.X., Sha, W.E.I., Ding, B.F., Guo, X., Li, Y.F., Hou, J.H., You, J.B., Yang, Y.: Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv. Mater. 24(22), 3046–3052 (2012)

    Article  CAS  Google Scholar 

  45. Chen, F.-C., Wu, J.-L., Lee, C.-L., Hong, Y., Kuo, C.-H., Huang, M.H.: Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl. Phys. Lett. 95(1), 013305 (2009)

    Article  Google Scholar 

  46. Morfa, A.J., Rowlen, K.L., Reilly III, T.H., Romero, M.J., van de Lagemaat, J.: Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92(1), 013504-1–013504-3 (2008)

    Article  Google Scholar 

  47. Qi, J., Dang, X., Hammond, P.T., Belcher, A.M.: Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core–shell nanostructure. ACS Nano 5(9), 7108–7116 (2011)

    Article  CAS  Google Scholar 

  48. Du, J., Qi, J., Wang, D., Tang, Z.: Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 5(5), 6914–6918 (2012)

    Article  CAS  Google Scholar 

  49. Standridge, S.D., Schatz, G.C., Hupp, J.T.: Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc. 131(24), 8407 (2009)

    Article  CAS  Google Scholar 

  50. Atwater, H.A., Polman, A.: A plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  CAS  Google Scholar 

  51. Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58(1), 267–297 (2007)

    Article  CAS  Google Scholar 

  52. Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8(12), 4391–4397 (2008)

    Article  CAS  Google Scholar 

  53. Nahm, C., Choi, H., Kim, J., Jung, D.R., Kim, C., Moon, J., Lee, B., Park, B.: The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl. Phys. Lett. 99(25), 253107 (2011)

    Article  Google Scholar 

  54. Hou, W.B., Pavaskar, P., Liu, Z.W., Theiss, J., Aykol, M., Cronin, S.B.: Plasmon resonant enhancement of dye sensitized solar cells. Energy Environ. Sci. 4(11), 4650–4655 (2011)

    Article  CAS  Google Scholar 

  55. Zhao, G., Kozuka, H., Yoko, T.: Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method. Sol. Energy Mater. Sol. Cell 46(3), 219–231 (1997)

    Article  CAS  Google Scholar 

  56. Lin, S.J., Lee, K.C., Wu, J.L., Wu, J.Y.: Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure. Appl. Phys. Lett. 99(4), 043306 (2011)

    Article  Google Scholar 

  57. Ding, B., Lee, B.J., Yang, M., Jung, H.S., Lee, J.-K.: Surface-plasmon assisted energy conversion in dye-sensitized solar cells. Adv. Energy Mater. 1(3), 415–421 (2011)

    Article  CAS  Google Scholar 

  58. Wang, C.L., Lan, C.M., Hong, S.H., Wang, Y.F., Pan, T.Y., Chang, C.W., Kuo, H.H., Kuo, M.Y., Diau, E.W.G., Lin, C.Y.: Enveloping porphyrins for efficient dye-sensitized solar cells. Energy Environ. Sci. 5(5), 6933–6940 (2012)

    Article  CAS  Google Scholar 

  59. Sheehan, S.W., Noh, H., Brudvig, G.W., Cao, H., Schmuttenmaer, C.A.: Plasmonic enhancement of dye-sensitized solar cells using core-shell-shell nanostructures. J. Phys. Chem. C 117(2), 927–934 (2013)

    Article  CAS  Google Scholar 

  60. Choi, H., Chen, W.T., Kamat, P.V.: Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6(5), 4418–4427 (2012)

    Article  CAS  Google Scholar 

  61. Hamann, T.W., Jensen, R.A., Martinson, A.B.F., Van Ryswyk, H., Hupp, J.T.: Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1(1), 66–78 (2008)

    Article  CAS  Google Scholar 

  62. Liu, M.Z., Guyot-Sionnest, P.: Preparation and optical properties of silver chalcogenide coated gold nanorods. J. Mater. Chem. 16(40), 3942–3945 (2006)

    Article  CAS  Google Scholar 

  63. Muduli, S., Game, O., Dhas, V., Vijayamohanan, K., Bogle, K.A., Valanoor, N., Ogale, S.B.: TiO2-Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Sol. Energy 86(5), 1428–1434 (2012)

    Article  CAS  Google Scholar 

  64. Jeong, N.C., Prasittichai, C., Hupp, J.T.: Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir 27(23), 14609–14614 (2011)

    Article  CAS  Google Scholar 

  65. Hagglund, C., Zach, M., Kasemo, B.: Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92(1), 013113 (2008)

    Article  Google Scholar 

  66. Ding, I.K., Zhu, J., Cai, W.S., Moon, S.J., Cai, N., Wang, P., Zakeeruddin, S.M., Gratzel, M., Brongersma, M.L., Cui, Y., McGehee, M.D.: Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1(1), 52–57 (2011)

    Article  CAS  Google Scholar 

  67. Erb, T., Zhokhavets, U., Gobsch, G., Raleva, S., Stuhn, B., Schilinsky, P., Waldauf, C., Brabec, C.J.: Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15(7), 1193–1196 (2005)

    Article  CAS  Google Scholar 

  68. Wu, J.-L., Chen, F.-C., Hsiao, Y.-S., Chien, F.-C., Chen, P., Kuo, C.-H., Huang, M.H., Hsu, C.-S.: Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5(2), 959–967 (2011)

    Article  CAS  Google Scholar 

  69. Lu, L., Luo, Z., Xu, T., Yu, L.: Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13(1), 59–64 (2012)

    Article  Google Scholar 

  70. Mihailetchi, V.D., Koster, L.J.A., Hummelen, J.C., Blom, P.W.M.: Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93(21), 216601 (2004)

    Article  CAS  Google Scholar 

  71. Liu, H.J., Goh, W.P., Leung, M.Y., Li, Y.N., Norsten, T.B.: Effect of nanoparticle stabilizing ligands and ligand-capped gold nanoparticles in polymer solar cells. Sol. Energy Mater. Sol. Cell 96(1), 302–306 (2012)

    Article  CAS  Google Scholar 

  72. Zhu, J.F., Xue, M., Hoekstra, R., Xiu, F.X., Zeng, B.Q., Wang, K.L.: Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Nanoscale 4(6), 1978–1981 (2012)

    Article  CAS  Google Scholar 

  73. You, J.B., Li, X.H., Xie, F.X., Sha, W.E.I., Kwong, J.H.W., Li, G., Choy, W.C.H., Yang, Y.: Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv. Energy Mater. 2(10), 1203–1207 (2012)

    Article  CAS  Google Scholar 

  74. Shahin, S., Gangopadhyay, P., Norwood, R.A.: Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using Au nanoparticles. Appl. Phys. Lett. 101(5), 053109 (2012)

    Article  Google Scholar 

  75. Kulkarni, A.P., Noone, K.M., Munechika, K., Guyer, S.R., Ginger, D.S.: Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10(4), 1501–1505 (2010)

    Article  CAS  Google Scholar 

  76. Chen, M.-C., Yang, Y.-L., Chen, S.-W., Li, J.-H., Aklilu, M., Tai, Y.: Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS Appl. Mater. Interfaces 5(3), 511–517 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This authors acknowledge the financial support from CUHK Focused Scheme B Grant “Center for Solar Energy Research” and CUHK University Grant-Direct Allocation (Project Code: 2060437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, S., Lee, L.T.L., Chen, T. (2014). Plasmon-Enhanced Excitonic Solar Cells. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_17

Download citation

Publish with us

Policies and ethics