Skip to main content

Status and Progress of High-efficiency Silicon Solar Cells

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 190))

Abstract

High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high–low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapin, D.M., Fuller, C.S., Pearson, G.L.: J. Appl. Phys. 25, 676 (1954)

    CAS  Google Scholar 

  2. http://www.pv-magazine.com/news/details/beitrag/mid-year-pv-review_100007695/#axzz2-KCHj6DvK

    Google Scholar 

  3. Goetzberger, A., Knobloch, J., Voss, B.: Crystalline Silicon Solar Cells. Wiley, New York (1998)

    Google Scholar 

  4. Green, M.A.: Silicon Solar Cells: Advanced Principles and Practice. Bridge Printery, Sydney (1995)

    Google Scholar 

  5. CZochralaski, J.: Ein Neues Verfahren zur Messung der Kristallisations geschwindigkeit der Metalle. Z. Phys. Chem. 92, 219 (1918)

    Google Scholar 

  6. Teal, G.K., Little, J.B.: Growth of germannium single crystals. Phys. Rev. 78, 219 (1959)

    Google Scholar 

  7. Teal, G.K., Bühler, E.: Growth of silicon single crystals and single crystal pn junctions. Phys. Rev. 87, 190 (1952)

    CAS  Google Scholar 

  8. Anttila, O.: In: Lindroos, V., Tilli, M., Lehto, A., Motooka, T. (eds.) Handbook of Silicon Based MEMS Materials and Technologies. William Andrew (2010) ISBN: 978-0-8155-1594-4

    Google Scholar 

  9. Ming Liaw, H.: Crystal growth of silicon. In: Mara, W.C.O. (ed.) Handbook of Semiconductor Silicon Technology. William Andrew (1990) ISBN: 978-0-8155-1237-0

    Google Scholar 

  10. Zulehner, W.: CZochralski growth of silicon. J. Cryst. Growth 65, 189 (1983)

    CAS  Google Scholar 

  11. Voronkov, V.V., Falster, R.: Vacancy-type microdefect formation in CZochralski silicon. J. Cryst. Growth 194, 76–88 (1998)

    CAS  Google Scholar 

  12. Zulehner, W.: Status and future of silicon crystal growth. Mater. Sci. Eng. B 4, 1–10 (1989)

    Google Scholar 

  13. Dietl, J., Helmreich, D., Sirtl, E.: Crystals: Growth, Properties and Application, vol. 5, p. 57. Springer, Berlin (1981)

    Google Scholar 

  14. Goetzberger, A., Hebling, C., Schock, H.W.: Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R 40, 1–46 (2003)

    Google Scholar 

  15. Arnberg, L., Sabatino, M.D., Ovrelid, E.J.: State-of-the-art growth of silicon for PV applications. J. Cryst. Growth 360, 56 (2012)

    CAS  Google Scholar 

  16. Fujiwara, K., Pan, W., Usami, N., et al.: Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting. Acta Mater. 54, 3191–3197 (2006)

    CAS  Google Scholar 

  17. Fujiwara, K., Pan, W., Sawada, K., et al.: Directional growth method to obtain high quality polycrystalline silicon from its melt. J. Cryst. Growth 292, 282–285 (2006)

    CAS  Google Scholar 

  18. Nakajima, K., Kutsukake, K., Fujiwara, K., Morishita, K., Ono, S.: Arrangement of dendrite crystals grown along the bottom of Si ingots using the dendritic casting method by controlling conductivity under crucibles. J. Cryst. Growth 319, 13–18 (2011)

    CAS  Google Scholar 

  19. Stoddard, N., Wu, B., Witting, I., et al.: Casting single crystal silicon: novel defect profiles from BP solar’s mono2 wafers. Diffus. Defect Data B 131–133, 1–8 (2008)

    Google Scholar 

  20. Wu, B., Clark, R.: Influence of inclusion on nucleation of silicon casting for photovoltaic (PV) application. J. Cryst. Growth 318, 200–207 (2011)

    CAS  Google Scholar 

  21. Zhang, H., Zheng, L., Ma, X., Zhao, B., Wang, C., Xu, F.: Nucleation and bulk growth control for high efficiency silicon ingot casting. J. Cryst. Growth 318, 283–287 (2011)

    CAS  Google Scholar 

  22. Wang, T.Y., Hsu, S.L., Fei, C.C., Yei, K.M., Hsu, W.C., Lan, C.W.: Grain control using spot cooling in multi-crystalline silicon crystal growth. J. Cryst. Growth 311, 263–267 (2009)

    CAS  Google Scholar 

  23. Nose, Y., Takahashi, I., Pan, W., Usami, N., Fujiwara, K., Nakajima, K.: Floating cast method to realize high-quality Si bulk multicrystals for solar cells. J. Cryst. Growth 311, 228–231 (2009)

    CAS  Google Scholar 

  24. Yeh, K.M., Hseih, C.K., Hsu, W.C., Lan, C.W.: High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification. Prog. Photovolt. Res. Appl. 18, 265–271 (2010)

    CAS  Google Scholar 

  25. Fujiwara, K.: Crystal growth behaviors of silicon during melt growth processes. Int. J. Photoenergy. Article Id: 169829 (2012)

    Google Scholar 

  26. Zubel, I.: The influence of atomic configuration of (h k l) planes on adsorption processes associated with anisotropic etching of silicon. Sens. Actuators A 94, 76 (2001)

    CAS  Google Scholar 

  27. Dziuban, J. A.: Proc. Eurosensors XIII Conf. 18B4, 671 (1999)

    Google Scholar 

  28. Wang, T., Surve, S., Hesketh, P.J.: Anisotropic etching of silicon in rubidium hydroxide. J. Electrochem. Soc. 141, 2493 (1994)

    CAS  Google Scholar 

  29. You, J.S., Kim, D., Huh, J.Y., Park, H.J., Pak, J.J., Kang, C.S.: Experiments on anisotropic etching of Si in TMAH. Sol. Energy Mater. Sol. Cells 66, 37–44 (2001)

    CAS  Google Scholar 

  30. Cheng, Y.T., Ho, J.J., Tsai, S.Y., Ye, Z.Z., Lee, W., Hwang, D.S., Chang, S.H., Chang, C.C., Wang, K.L.: Efficiency improved by acid texturization for multi-crystalline silicon solar cells. Sol. Energy 85, 87–94 (2011)

    CAS  Google Scholar 

  31. De Wolf, S., Einhaus, R., De Clercq, K., Szlufcik, J.: In: Proceedings of the 16th European PV Solar Energy Conference, Glasgow, p. 1521 (2000)

    Google Scholar 

  32. Burgers, A.R., Bultman, J.H., Beneking, C., Nositchka, W.A., Voigt, O., Kurz, H.: In: Proceedings of the 16th European PV Solar Energy Conference, Glasgow, p. 1427 (2000)

    Google Scholar 

  33. Ruby, D.S., Zaidi, S.H., Narayanan, S.: In: Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, USA, p. 75 (2000)

    Google Scholar 

  34. Kwon, T.Y., Yang, D.H., Ju, M.K., Jung, W.W., Kim, S.Y., Lee, Y.W., Gong, D.Y., Yi, J.: Screen printed phosphorus diffusion for low-cost and simplified industrial mono-crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 14–17 (2011)

    CAS  Google Scholar 

  35. Chaoui, R., Messaoud, A., Zitouni, M.L., Charif, M.R.: Development of an emitter for industrial silicon solar cells using the doped oxide solid source diffusion technique. Renew. Energy 23, 417–428 (2001)

    CAS  Google Scholar 

  36. Nakaya, H., Nishida, M., Takeda, Y., Moriuchi, S., Tongegawa, T., Machida, T., Nunoi, T.: Polycrystalline silicon solar cells with V-grooved surface. Sol. Energy Mater. Sol. Cells 34, 219–225 (1994)

    CAS  Google Scholar 

  37. Rohatgi, A., Chen, Z., Sana, P., Crotty, J., Salami, J.: High efficiency multi-crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 34, 227–236 (1994)

    CAS  Google Scholar 

  38. Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., Oota, O.: HITTM cells—high-efficiency crystalline Si cells with novel structure. Prog. Photovolt. Res. Appl. 8, 503–513 (2000)

    CAS  Google Scholar 

  39. Neitzert, H.C., Spinillo, P., Bellone, S., Licciardi, G.D., Tucci, M., Roca, F., Gialanella, L., Romano, M.: Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 83, 435–446 (2004)

    CAS  Google Scholar 

  40. Taguchi, M., Terakawa, A., Maruyaman, E., Tanaka, M.: Obtaining a higher Voc in HIT cells. Prog. Photovolt. Res. Appl. 13, 481–488 (2005)

    CAS  Google Scholar 

  41. Fujiwara, H., Kondo, M.: Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells. Appl. Phys. Lett. 90, 013503 (2007)

    Google Scholar 

  42. De wolf, S., Kondo, M.: Boron-doped a-Si:H/c-Si interface passivation: degradation mechanism. Appl. Phys. Lett. 91, 112109 (2007)

    Google Scholar 

  43. Wang, Q., Page, M.R., Xu, Y., Iwaniczko, E., Williams, E., Wang, T.H.: Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells. Thin Solid Films 430, 208–211 (2003)

    CAS  Google Scholar 

  44. Martin, I., Munoz, D., Voz, C., Vetter, M., Alcubilla, R., Damon-Lacoste, J., Roca i Cabarrocas, P., Villar, F., Bertomeu, J., Andreu, J.: Comparison of (n+) a-Si:H/(p) c-Si heterojunction emitters using a-Si:H films deposited by PECVD or HWCVD. Conference record of the 2006 I.E. 4th World Conference on Photovoltaic Energy Conversion, vols. 1 and 2, pp. 1091–1094 (2006)

    Google Scholar 

  45. Hernandez-Como, N., Morlaes-Acevedo, A., Matsumoto, Y.: I-V characteristics of a-Si-c-Si hetero-junction diodes made by hot wire CVD. Sol. Energy Mater. Sol. Cells 95, 1996–2000 (2011)

    CAS  Google Scholar 

  46. Pysch, D., Meinhardt, C., Ritzau, K.-U., Bivour, M., Zimmermann, K., Schetter, C., Hermle, M., Glunz, S.W.: Comparison of intrinsic amorphous silicon buffer layers for silicon heterojunction solar cells deposited with different PECVD technologies. 35th IEEE Photovoltaic Specialists Conference, pp. 3570–3576 (2010)

    Google Scholar 

  47. Xiao, S.Q., Xu, S., Zhou, H.P., Wei, D.Y., Huang, S.Y., Xu, L.X., Sern, C.C., Guo, Y.N., Khan, S.: Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing. Appl. Phys. Lett. 100, 233902 (2012)

    Google Scholar 

  48. Sawada, T., Terada, N., Tsuge, S., Baba, T., Takahama, T., Wakisaka, K., Tsuda, S., Nakano, S.: In: Proceedings of IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994. IEEE, New York (1994)

    Google Scholar 

  49. Goetzberger, A., Knobloch, J., Vob, B.: Crystalline Silicon Solar Cells, pp. 87–131. Wiley, New York (1998)

    Google Scholar 

  50. Kern, W., Puotinen, D.A.: Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 31, 187 (1970)

    CAS  Google Scholar 

  51. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., Bright, T.B.: Unusually low surface recombination velocity on silicon germanium surfaces. Phys. Rev. Lett. 57, 249 (1986)

    CAS  Google Scholar 

  52. Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett, C., Ruby, D., Winderbaum, S., Leo, A.: Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76, 277 (2004)

    CAS  Google Scholar 

  53. Schnell, M., Ludemann, R., Schaefer, S.: Plasma surface texturing for multicrystalline silicon solar cells. Proc. Photovoltaic Specialists Conference, 2000, Conference Record of the Twenty-Eighth IEEE, Anchorage, AK, USA, p. 367. IEEE (2000)

    Google Scholar 

  54. Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S., Tasch, A.: Very low defect remote hydrogen plasma clean of Si (100) for homoepitaxy. J. Electron. Mater. 19, 1027 (1990)

    CAS  Google Scholar 

  55. Martin, I., Vetter, M., Orpella, A., Voz, C., Puigdollers, J., Alcubilla, R., Kharchenko, A.V., Roca i Cabarrocas, P.: Improvement of crystalline silicon surface passivation by hydrogen plasma treatment. Appl. Phys. Lett. 84, 1474 (2004)

    CAS  Google Scholar 

  56. Sinton, R.A., Cuevas, A.: Contactless determination of current-voltage characteristics and minority-carrier lifetime in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510 (1996)

    CAS  Google Scholar 

  57. Narasimha, S., Rohatgi, A.: Optimized aluminum back surface field techniques for silicon solar cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, USA, pp. 63–66 (1997)

    Google Scholar 

  58. Peters, S.: Rapid thermal processing of crystalline silicon materials and solar cells. Ph.D. thesis, University of Konstanz, p. 62 (2004)

    Google Scholar 

  59. Schultz, O., Mette, A., Hermle, M., Glunz, S.W.: Thermal oxidation for crystalline silicon solar cells exceeding 19 % efficiency applying industrially feasible process technology. Prog. Photovolt. Res. Appl. 16, 317 (2008)

    CAS  Google Scholar 

  60. Benick, J., ZXimmermann, K., Spiegelman, J., Hermle, M., Glunz, S.W.: Rear side passivation of PERC-type solar cells by wet oxides grown from purified steam. Prog. Photovolt. Res. Appl. 19, 361 (2011)

    CAS  Google Scholar 

  61. Mack, S., Wolf, A., Walczak, A., Thaidigsmann, B., Allan Wotke, E., Spiegelman, J.J., Preu, R., Biro, D.: Properties of purified direct steam grown silicon thermal oxides. Sol. Energy Mater. Sol. Cells 95, 2570 (2011)

    CAS  Google Scholar 

  62. Deal, B.E., Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770 (1965)

    CAS  Google Scholar 

  63. Deal, B.E.: Thermal oxidation kinetics of silicon in pyrogenic H2O and 5% HCl/H2O mixtures. J. Electrochem. Soc. 125, 576–579 (1978)

    CAS  Google Scholar 

  64. Stocks, M., Cuevas, A.: Surface recombination velocity of thermally oxidized multicrystalline silicon. In: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, Vienna, Austria, pp. 1623–1626 (1998)

    Google Scholar 

  65. Schultz, O., Glunz, S.W., Willeke, G.P.: Multycrystalline silicon solar cells exceeding 20% efficiency. Prog. Photovolt. Res. Appl. 12, 5530558 (2004)

    Google Scholar 

  66. Schmiga, C., Nagel, H., Steckemetz, S., Hezel, R.: 17% efficient multicrystalline silicon solar cells with rear thermal oxide passivation. In: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, pp. 1060–1063 (2004)

    Google Scholar 

  67. Glunz, S.W., Biro, D., Rein, S., Warta, W.: Field-effect passivation of the SiO2-Si interface. J. Appl. Phys. 86, 683 (1999)

    CAS  Google Scholar 

  68. Sai, H., Imai, R., Yamamoto, N., Ishiwata, T., Arafune, K., Ohshita, Y., Yamaguchi, M.: Surface recombination at Si/SiO2 interface with various interface state densities and oxide charges. Proc. 21st European Photovoltaic Solar Energy Conference, p. 915, Dresden, Germany, 3–6 Sept 2006. WIP-Renewable Energies, Munich, Germany (2006)

    Google Scholar 

  69. Jana, T., Mukhopadhyay, S., Ray, S.: Low temperature silicon oxide and nitride for surface passivation of silicon solar cells. Sol. Energy Mater. Sol. Cells 71, 197 (2002)

    CAS  Google Scholar 

  70. Reed, M.L., Plummer, J.D.: Chemistry of Si-SiO2 interface trap annealing. J. Appl. Phys. 63, 5776 (1988)

    CAS  Google Scholar 

  71. Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., Green, M.A.: 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363 (1989)

    CAS  Google Scholar 

  72. Kerr, M.J., Cuevas, A.: Very low bulk and surface recombination in oxidized silicon wafers. Semicond. Sci. Technol. 17, 35 (2002)

    CAS  Google Scholar 

  73. Eages, W.D., Swanson, R.M.: Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J. Appl. Phys. 58, 4267 (1985)

    Google Scholar 

  74. Gruenbaum, P.E., Gan, J.Y., King, R.R., Swanson, R.M.: Stable passivation for high-efficiency silicon solar cells. In: Proc. 21st IEEE Photovoltaic Specialist Conference, Orlando, p. 317 (1990)

    Google Scholar 

  75. Stephens, A.W., Aberle, A.G., Green, M.A.: Surface recombination velocity measurements at the silicon-silicon dioxide interface by microwave-detected photoconductance decay. J. Appl. Phys. 76, 363 (1994)

    CAS  Google Scholar 

  76. King, R.R., Sinton, R.A., Swanson, R. M.: Low surface recombination velocities on doped silicon and their applications for point contact solar cells. Proc. 19th IEEE Photovoltaic Specialist Conference, New Orleans, p. 1168 (1987)

    Google Scholar 

  77. i Tomàs, R.F.: Surface passivation of crystalline silicon by amorphous silicon carbide films for photovoltaic applications. Ph.D. Thesis, Polytechnic University of Catalonia (2008)

    Google Scholar 

  78. Zhao, J., Wang, A., Altermatt, P., Green, M.A.: Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 66, 3636 (1995)

    CAS  Google Scholar 

  79. Zhao, J., Wang, A., Green, M.A.: High-efficiency PERL and PERT silicon solar cells on Fz and MCZ substrates. Sol. Energy Mater. Sol. Cells 65, 429 (2001)

    CAS  Google Scholar 

  80. Hofmann, M., Janz, S., Schmidt, C., Kambor, S., Suwito, D., Kohn, N., Rentsch, J., Preu, R., Glunz, S.W.: Recent developments in rear-surface passivation at Fraunhofer ISE. Sol. Energy Mater. Sol. Cells 93, 1074 (2009)

    CAS  Google Scholar 

  81. Dingemans, G., van de Sanden, M.C.M., Kessels, W.M.M.: Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film. Phys. Status Solidi (RRL) 5, 22 (2011)

    CAS  Google Scholar 

  82. Zhou, H.P., Wei, D.Y., Xu, S., Xiao, S.Q., Xu, L.X., Huang, S.Y., Guo, Y.N., Khan, S., Xu, M.: Si surface passivation by SiOx:H films deposited by a low-frequency ICP for solar cell applications. J. Phys. D Appl. Phys. 45, 395401 (2012)

    Google Scholar 

  83. Hoex, B., Peeters, F.J.J., Creatore, M., Blauw, M.A., Kessels, W.M.M., van de Sanden, M.C.M.: High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon. J. Vac. Sci. Technol. A 24, 1823 (2006)

    CAS  Google Scholar 

  84. Leguijt, C., et al.: Low-temperature surface passivation for silicon solar cells. Sol. Energy Mater. Sol. Cells 40, 297 (1996)

    CAS  Google Scholar 

  85. Schmidt, J., Cuevas, A.: Carrier recombination at silicon-silicon nitride interfaces fabricated by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 85, 3626 (1999)

    CAS  Google Scholar 

  86. de Wolf, S., Agostinelli, G., Beaucarne, G., Vitanov, P.: Influence of stoichiometry of direct plasma-enhanced chemical vapor deposited SiNx films and silicon substrate surface roughness on surface passivation. J. Appl. Phys. 97, 063303 (2005)

    Google Scholar 

  87. Hoex, B., Van Erven, A.J.M., Bosch, R.C.M., Stals, W.T.M., Bijker, M.D., Van den Oever, P.J., Kessels, W.M.M., Van de Sanden, M.C.M.: Industrial high-rate (similar to 5 nm/s) deposited silicon nitride yielding high-quality bulk and surface passivation under optimum anti-reflection coating conditions. Prog. Photovolt. Res. Appl. 13, 705 (2005)

    CAS  Google Scholar 

  88. Hong, J., Kessesl, W.M.M., Soppe, W.J., Weeber, W.W., Amoldbik, W.M., Van de Sanden, M.C.M.: Influence of the high-temperature “firing” step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coatings on silicon solar cells. J. Vac. Sci. Technol. B 21, 2123 (2003)

    CAS  Google Scholar 

  89. Pierson, H.O.: Processing of refractory carbides and nitrides (coatings), Chapter 15. In: Pierson, H.O. (ed.) Handbook of Refractory Carbides and Nitrides, p. 290. Noyes, Westwood, NJ (1996)

    Google Scholar 

  90. Soppe, W.J., Duijvelaar, B.G., Schiermeier, S.E.A.: Proc. of 16th European PVSEC, Glasgow, UK, pp. 1420–1423 (2000)

    Google Scholar 

  91. Duerinckx, F., Szlufcik, J.: Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Sol. Energy Mater. Sol. Cells 72, 231 (2002)

    CAS  Google Scholar 

  92. Bertoni, M.I., et al.: Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 19, 187 (2010)

    Google Scholar 

  93. Dingemans, G., Kessels, W.M.M.: Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 30, 040802 (2012)

    Google Scholar 

  94. Warren, W.L., Kanicki, J., Robertson, J., Poindexter, E.H., McWhorter, P.J.: Electron-paramagnetic-resonance investigation of charge trapping centers in amorphous-silicon nitride films. J. Appl. Phys. 74, 4034 (1993)

    CAS  Google Scholar 

  95. Curry, S.E., Lenahan, P.M., Krick, D.T., Kanicki, J., Kirk, C.T.: Evidence for a negative electron-electron correlation-energy in the dominant deep trapping center in silicon-nitride films. Appl. Phys. Lett. 56, 1359 (1990)

    CAS  Google Scholar 

  96. Mäckel, H., Lüdemann, R.: Detailed study of the composition of hydrogenated SiN(x) layers for high-quality silicon surface passivation. J. Appl. Phys. 92, 2602 (2002)

    Google Scholar 

  97. Dauwe, S., Mittelstädt, L., Metz, A., Hezel, R.: Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Prog. Photovolt. Res. Appl. 10, 271 (2002)

    CAS  Google Scholar 

  98. Elmiger, J.R., Kunst, M.: Investigating of charge carrier injection in silicon nitride/silicon junctions. Appl. Phys. Lett. 69, 517 (1996)

    CAS  Google Scholar 

  99. Zhou, H.P., Wei, D.Y., Xu, L.X., Guo, Y.N., Xiao, S.Q., Huang, S.Y., Xu, S.: Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications. Appl. Surf. Sci. 11, 111 (2012)

    Google Scholar 

  100. Lelièvre, J.-F., Fourmond, E., Kaminski, A., Palais, O., Ballutaud, D., Lemiti, M.: Study of the composition of hydrogenated silicon nitride SiNx:H for efficient surface and bulk passivation of silicon. Sol. Energy Mater. Sol. Cells 93, 1281 (2009)

    Google Scholar 

  101. Schmidt, J., Moschner, J.D., Henze, J., Dauwe, S., Hezel, R.: Recent progress in the surface passivation of silicon solar cells using silicon nitride. Proc. 19th European Photovoltaic Solar Energy Conference, Paris, France, 7–11 June 2004, p. 391. WIP-Renewable Energies, Munich, Germany (2004)

    Google Scholar 

  102. Hoex, B., Heil, S.B.S., Langereis, E., Van de Sanden, M.C.M., Kessels, W.M.M.: Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006)

    Google Scholar 

  103. Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H.F.W., De Wolf, S., Beaucame, G.: Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol. Energy Mater. Sol. Cells 90, 3438 (2006)

    CAS  Google Scholar 

  104. Hoex, B., Schmidt, J., Pohl, P., Van de Sanden, M.C.M., Kessels, W.M.M.: Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008)

    Google Scholar 

  105. Glunz, S.W., Benick, J., Biro, D., Bivour, M., Hermle, M., Pysch, D., Rauer, M., Reichel, C., Richter, A., Rüdiger, M., Schmiga, C., Suwito, D., Wolf, A., Preu, R.: n-type silicon-enabling efficiencies >20% in industrial production. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, pp. 50–56 (2010)

    Google Scholar 

  106. Benick, J., Hoex, B., van de Sanden, M.C.M., Kessels, W.M.M., Schultz, O., Glunz, S.W.: High efficiency n-type Si solar cells on Al(2)O(3)-passivated boron emitters. Appl. Phys. Lett. 92, 253504 (2008)

    Google Scholar 

  107. George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010)

    CAS  Google Scholar 

  108. Puurunen, R.L.: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Google Scholar 

  109. Goldstein, D.N., McCormick, J.A., George, S.M.: Al(2)O(3) atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry. J. Phys. Chem. C 112, 19530 (2008)

    CAS  Google Scholar 

  110. Elliott, S.D., Greer, J.C.: Simulating the atomic layer deposition of alumina from first principles. J. Mater. Chem. 14, 3246 (2004)

    CAS  Google Scholar 

  111. Heil, S.B.S., Van Hemmen, J.L., Van de Sanden, M.C.M., Kessels, W.M.M.: Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides: A case study for Al(2)O(3). J. Appl. Phys. 103, 103302 (2008)

    Google Scholar 

  112. Benick, J., Richter, A., Hermle, M., Glunz, S.W.: Thermal stability of the Al2O3 passivation on p-type silicon surfaces for solar cell applications. Phys. Status Solidi (RRL) 3, 233 (2009)

    CAS  Google Scholar 

  113. Dingemans, G., Van de Sanden, M.C.M., Kessels, W.M.M.: Influence of the deposition temperature on the c-Si surface passivation by Al2O3 films synthesized by ALD and PECVD. Electrochem. Solid State Lett. 13, H76 (2010)

    CAS  Google Scholar 

  114. Dingemans, G., Seguin, R., Engelhart, P., Van de Sanden, M.C.M., Kessels, W.M.M.: Silicon surface passivation by ultrathin Al2O3 films synthesized by thermal and plasma atomic layer deposition. Phys. Status Solidi (RRL) 4, 10 (2010)

    CAS  Google Scholar 

  115. Schmidt, J., Veith, B., Brendel, R.: Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks. Phys. Status Solidi (RRL) 3, 287 (2009)

    CAS  Google Scholar 

  116. Dingemans, G., Terlinden, N.M., Pierreux, D., Profijt, H.B., Van de Sanden, M.C.M., Kessels, W.M.M.: Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al2O3. Electrochem. Solid State Lett. 14, H1 (2011)

    CAS  Google Scholar 

  117. Benick, J., Richter, A., Li, T.-T.A.A., Grant, N.E., Mc Intosh, K.R., Ren, Y., Weber, K.J., Hermle, M., Glunz, S.W.: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010. IEEE, New York (2010)

    Google Scholar 

  118. Werner, F., Veith, B., Zielke, D., Kuhnemund, L., Tegenkamp, C., Seibt, M., Brendel, R., Schmidt, J.: Electronic and chemical properties of the c-Si/Al2O3 interface. J. Appl. Phys. 109, 113701 (2011)

    Google Scholar 

  119. Werner, F., Veith, B., Tiba, V., Poodt, P., Roozeboom, F., Brendel, R., Schmidt, J.: Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide. Appl. Phys. Lett. 97, 162103 (2010)

    Google Scholar 

  120. Profijt, H.B., Kudlacek, P., Van de Sanden, M.C.M., Kessels, W.M.M.: Ion and photon surface interaction during remote plasma ALD of metal oxides. J. Electrochem. Soc. 158, G88 (2011)

    CAS  Google Scholar 

  121. Hoex, B., Schmidt, J., Bock, R., Altermatt, P.P., Van de Sanden, M.C.M.: Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl. Phys. Lett. 91, 112107 (2007)

    Google Scholar 

  122. Richter, A., Benick, J., Hermle, M., Glunz, S.W.: Excellent silicon surface passivation with 5 angstrom thin ALD Al2O3 layers: influence of different thermal post-deposition treatments. Phys. Status Solidi (RRL) 5, 202 (2011)

    CAS  Google Scholar 

  123. Hoex, B., Van de Sanden, M.C.M., Schmidt, J., Brendel, R., Kessels, W.M.M.: Surface passivation of phosphorus-diffused n(+)-type emitters by plasma-assisted atomic-layer deposited Al2O3. Phys. Status Solidi (RRL) 6, 4 (2012)

    CAS  Google Scholar 

  124. Dingemans, G., Beyer, W., Van de Sanden, M.C.M., Kessels, W.M.M.: Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks. Appl. Phys. Lett. 97, 152106 (2010)

    Google Scholar 

  125. Dingemans, G., Einsele, F., Beyer, W., Van de Sanden, M.C.M., Kessels, W.M.M.: Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface. J. Appl. Phys. 111, 093713 (2012)

    Google Scholar 

  126. Matsunaga, K., Tanaka, T., Yamamoto, T., Ikuhara, Y.: First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003)

    Google Scholar 

  127. Weber, J.R., Janotti, A., van de Walle, C.G.: Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J. Appl. Phys. 109, 033715 (2011)

    Google Scholar 

  128. Shin, B., Weber, J.R., Long, R.D., Hurley, P.K., van de Walle, C.G., McIntyre, P.C.: Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates. Appl. Phys. Lett. 96, 152908 (2010)

    Google Scholar 

  129. Afanas’ev, V.V., Stesmans, A., Mrstik, B.J., Zhao, C.: Impact of annealing-induced compaction on electronic properties of atomic-layer-deposited Al2O3. Appl. Phys. Lett. 81, 1678 (2002)

    Google Scholar 

  130. Gielis, J.J.H., Hoex, B., Van de Sanden, M.C.M., Kessels, W.M.M.: Negative charge and charging dynamics in Al(2)O(3) films on Si characterized by second-harmonic generation. J. Appl. Phys. 104, 073701 (2008)

    Google Scholar 

  131. Mack, S., Wolf, A., Brosinsky, C., Schmeisser, S., Kimmerle, A., Saint-Cast, P., Hofmann, M., Biro, D.: Silicon surface passivation by thin thermal oxide/PECVD layer stack systems. IEEE J. Photovoltaics 1, 135 (2011)

    Google Scholar 

  132. Dingemans, G., Terlinden, N.M., Verheijen, M.A., Van de Sanden, M.C.M., Kessels, W.M.M.: Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. J. Appl. Phys. 110, 093715 (2011)

    Google Scholar 

  133. Guha, S., Narayanan, V.: Oxygen vacancies in high dielectric constant oxide-semiconductor films. Phys. Rev. Lett. 98, 196101 (2007)

    Google Scholar 

  134. Foster, A.S., Lopez Gejo, F., Shluger, A.L., Nieminen, R.M.: Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002)

    Google Scholar 

  135. Poodt, P., et al.: High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564 (2010)

    CAS  Google Scholar 

  136. Poodt, P., Cameron, D.C., Dickey, E., George, S.M., Kuznetsov, V., Parsons, G.N., Roozeboom, F., Sundaram, G., Vermeer, A.: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 30, 010802 (2012)

    Google Scholar 

  137. Suntola, T., Antson, J.: Method for producing compound thin films. US Patent 4058430, 15 Nov 1977

    Google Scholar 

  138. Levy, D.H., Freeman, D., Nelson, S.F., Cowdery-Corvan, P.J., Irving, L.M.: Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 92, 192101 (2008)

    Google Scholar 

  139. Dingemans, G., Kessels, W.M.M.: Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 Sept 2010

    Google Scholar 

  140. Vermang, B., Rothschild, A., Racz, A., John, J., Poortmans, J., Mertens, R., Poodt, P., Tiba, V., Roozeboom, F.: Spatially separated atomic layer deposition of Al2O3, a new option for high-throughput Si solar cell passivation. Prog. Photovolt. Res. Appl. 19, 733 (2011)

    CAS  Google Scholar 

  141. Werner, F., Stals, W., Görtzen, R., Veith, B., Brendel, R., Schmidt, J.: High-rate atomic layer deposition of Al(2)O(3) for the surface passivation of Si solar cells. Energy Procedia 8, 301 (2011)

    CAS  Google Scholar 

  142. Miyajima, S., Irikawa, I., Yamada, A., Konagai, M.: High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition. Appl. Phys. Express 3, 012301 (2010)

    Google Scholar 

  143. Saint-Cast, P., Kania, D., Hofmann, M., Benick, J., Rentsch, J., Preu, R.: Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide. Appl. Phys. Lett. 95, 151502 (2009)

    Google Scholar 

  144. Li, T.T., Cuevas, A.: Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide. Phys. Status Solidi (RRL) 3, 160 (2009)

    CAS  Google Scholar 

  145. Yamamoto, K., Nakajima, A., Yoshimi, M., et al.: A thin-film silicon solar cell and module. Prog. Photovolt. Res. Appl. 13, 489 (2005)

    CAS  Google Scholar 

  146. Matsuda, A., Nomoto, K., Takeuchi, Y., et al.: Temperature-dependence of the sticking and loss probabilities of silyl radicals on hydrogenated amorphous-silicon. Surf. Sci. 227, 50 (1990)

    CAS  Google Scholar 

  147. Matsuda, A.: Microcrystalline silicon. Growth and device application. J. Non-Cryst. Solids 338–340, 1–12 (2004)

    Google Scholar 

  148. Stangl, J., Holy, V., Bauer, G.: Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725 (2004)

    CAS  Google Scholar 

  149. Shchukin, V., Ledentsov, N.N., Bimberg, D.: Epitaxy of Nanostructures. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  150. Tsunomura, Y., Yoshimine, T., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., Sakata, H., Maruyama, E., Tanaka, M.: Twenty-two percent efficiency HIT solar cell. Sol. Energy Mater. Sol. Cells 93, 670 (2009)

    CAS  Google Scholar 

  151. Mingirulli, N., et al.: Efficient interdigitated back-contacted silicon heterojunction solar cells. Status Solidi (RRL) 5, 159 (2011)

    CAS  Google Scholar 

  152. Martín de Nicolá, S., Muñoz, D., Ozanne, A.S., Nguyen, N., Ribeyron, P.J.: Optimisation of doped amorphous silicon layers applied to heterojunction solar cells. Energy Procedia 8, 226 (2011)

    Google Scholar 

  153. Bätzner, D.L., et al.: Properties of high efficiency silicon heterojunction cells. Energy Procedia 8, 153 (2011)

    Google Scholar 

  154. Keppner, H., Torres, P., Flueckiger, R., Meier, J., Shah, A., Fortmann, C., Fath, P., Happle, K., Kiess, H.: Passivation properties of amorphous and microcrystalline silicon layers deposited by VHF-GD for crystalline silicon solar-cells. Sol. Energy Mater. Sol. Cells 34, 201 (1994)

    CAS  Google Scholar 

  155. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y.: Development of new a-Si c-Si heterojunction solar-cells—ACJ-HIT (Artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 31(Pt 1), 3518 (1992)

    CAS  Google Scholar 

  156. Schaper, M., Schmidt, J., Plagwitz, H., Brendel, R.: 20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation. Prog. Photovolt. Res. Appl. 13, 381 (2005)

    CAS  Google Scholar 

  157. Stannowski, B., Schropp, R.E., Wehrspohn, R.B., Powell, M.J.: Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD. J. Non-Cryst. Solids 299–302, 1340 (2002)

    Google Scholar 

  158. Gatz, S., Plagwitz, H., Altermatt, P.P., Terheiden, B., Brendel, R.: Thermal stability of amorphous silicon/silicon nitride stacks for passivating crystalline silicon solar cells. Appl. Phys. Lett. 93, 173502 (2008)

    Google Scholar 

  159. Plagwitz, H., Takahashi, Y., Terheiden, B., Brendel, R.: In: Poortmans, J., Ossenbrink, H., Dunlop, E., Helm, P. (eds.) Proceedings of the 21st European Photovoltaic Solar Energy Conf., p. 688 WIP-Renewable Energies, Munich (2006)

    Google Scholar 

  160. Dauwe, S., Schmidt, J., Hezel, R.: In: Proceedings of the 29th IEEE Photovoltaic Specialists Conference, p. 1246. IEEE, New Orleans (2002)

    Google Scholar 

  161. Leendertz, C., Mingirulli, N., Schulze, T.F., Kleider, J.P., Rech, B., Korte, L.: Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Appl. Phys. Lett. 98, 202108 (2011)

    Google Scholar 

  162. Schulze, T.F., Beaushausen, H.N., Leendertz, C., Dobrich, A., Rech, B., Korte, L.: Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions. Appl. Phys. Lett. 96, 25102 (2010)

    Google Scholar 

  163. De Wolf, S., Demaurex, B., Descoeudres, A., Ballif, C.: Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces. Phys. Rev. B 83, 233301 (2011)

    Google Scholar 

  164. Muñoz, D., Voz, C., Martin, I., Orpella, A., Puigdollers, J., Alcubilla, R., Villar, F., Bertomeu, J., Andreu, J., Damon-Lacoste, J., Roca i Cabarrocas, P.: Progress in a-Si:H/c-Si heterojunction emitters obtained by Hot-Wire CVD at 200°C. Thin Solid Films 516, 761 (2008)

    Google Scholar 

  165. Zhou, H.P., Wei, D.Y., Xu, S., Xiao, S.Q., Xu, L.X., Huang, S.Y., Guo, Y.N., Khan, S., Xu, M.: Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma. J. Appl. Phys. 112, 013708 (2012)

    Google Scholar 

  166. Xiao, S.Q., Xu, S., Xu, L.X., Huang, S.Y., Zhou, H.P., Wei, D.Y., Guo, Y.N.: A novel capacitive-coupled electrode-less plasma (CCEP) for deposition of passivating layer a-Si:H (unpublished)

    Google Scholar 

  167. Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., Sakata, H., Maruyama, E.: High-efficiency HIT solar cell on thin (<100 μm) silicon wafer. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 1690–1693 (2009)

    Google Scholar 

  168. Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (Version 34). Prog. Photovolt. Res. Appl. 17, 320–326 (2009)

    CAS  Google Scholar 

  169. Ulyashin, A., Wright, D.N., Bentzen, A., Suphellen, A., Marstein, E., Holt, A.: In: Willeke, G., Ossenbrink, H., Helm, P. (eds.) Proceedings of the 22nd European Photovoltaic Solar Energy Conference, p. 1690. WIP-Renewable Energies, Munich (2007)

    Google Scholar 

  170. Plagwitz, H.: Ph.D. thesis, Institut für Solarenergieforschung Hameln (2007)

    Google Scholar 

  171. Bentzen, A., Ulyashin, A., Suphellen, A., Sauar, E., Grambole, D., Wright, D.N., Marstein, E.S., Svensson, B.G., Holt, A.: In: Proceedings of the 15th International Photovoltaic Science and Engineering Conference, p. 316. China Solar Energy Society, Shanghai (2005)

    Google Scholar 

  172. Lorenz, A., John, J., Vermang, B., Poortmans, J.: Influence of surface conditioning and passivation schemes on the internal rear reflectance of bulk silicon solar cells. Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, pp. 2059–2061 (2010)

    Google Scholar 

  173. Schneiderlöchner, E., Preu, R., Lüdemann, R., Glunz, S.W.: Laser-fired rear contacts for crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 10, 29 (2002)

    Google Scholar 

  174. Engelhart, P., Hermann, S., Neubert, T., Plagwitz, H., Grischke, R., Meyer, R., Schoonderbeek, A., Stute, U., Brendel, R.: Laser ablation of SiO2 for locally concated Si solar cells with ultra-short pulses. Prog. Photovolt. Res. Appl. 15, 521 (2007)

    CAS  Google Scholar 

  175. Lauinger, T., Schmidt, J., Aberle, A.G., Hezel, R.: Surface passivation properties of silicon/silicon oxide/silicon nitride structures for solar cells. Proceedings of the 13th European Photovoltaic Solar Energy Conference, Nice, France, pp. 1291–1294 (1995)

    Google Scholar 

  176. Dullweber, T., Gatz, S., Hannebauer, H., Falcon, T., Hesse, R., Schmidt, J., Brendel, R.: Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells. Prog. Photovolt. Res. Appl. 20, 630–638 (2012)

    CAS  Google Scholar 

  177. Fischer, B.: PV-Tools, Hameln, Germany (2011)

    Google Scholar 

  178. Münzer, K.A., Schöne, J., Teppe, A., Schlosser, R.E., Hein, M., Hammer, D., Hüls, S., Hanke, M., Keller, S., Fath, P.: Advanced rear side technology for industrial high efficiency solar cells. Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, pp. 2314–2318 (2010)

    Google Scholar 

  179. Böscke, T., Hellriegel, R., Wütherich, T., Bornschein, L., Helbig, A., Carl, R., Dupke, M., Stichtenoth, D., Aichele, T., Jesswein, R., Roth, T., Schöllhorn, C., Geppert, T., Grohe, A., Lossen, J., Krokoszinski, H-J.: Fully screen-printed PERC cells with laser-fired contacts—an industrial cell concept with 19.5% efficiency. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA, pp. 3663–3666 (2011)

    Google Scholar 

  180. Lai, J.-H., Upadhyaya, A., Ramanathan, R., Das, A., Tate, K., Upadhyaya, V., Kapoor, A., Chai-Chen, C.-W., Rohatgi, A.: Large area 19.4% efficient rear passivated silicon solar cells with local Al BSF and screen-printed contacts. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA, p. 1929 (2011)

    Google Scholar 

  181. Reinwand, D., Specht, J., Stüwe, D., Seitz, S., Nekarda, J.-F., Biro, D., Preu, R., Trassl, R.: 21.1% efficient PERC silicon solar cells on large scale by using in-line sputtering for metallization. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, USA, pp. 3582–3586 (2010)

    Google Scholar 

  182. Rohatgi, A., Narasimha, S.: Design, fabrication, and analysis of greater than 18% efficient multicrystalline silicon solar cell. Proceedings of the 9th International Photovoltaic Science and Engineering Conference, pp. 187–197 (1996)

    Google Scholar 

  183. Mittelstädt, L., Dauwe, S., Metz, A., Hezel, R., Häbler, C.: Front and rear silicon-nitride-passivated multicrystalline silicon solar cells with an efficiency of 18.1%. Prog. Photovolt. Res. Appl. 10, 35–39 (2002)

    Google Scholar 

  184. Zhao, J., Wang, A., Green, M.A.: 19.8% efficient multicrystalline silicon solar cells with ‘honeycomb’ textured front surface. Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, pp. 1681–1684 (1998)

    Google Scholar 

  185. Macdonald, D., Cuevas, A.: The trade-off between phosphorus gettering and thermal degradation in multicrystalline silicon. Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 1707–1710 (2000)

    Google Scholar 

  186. Schultz, O., Riepe, S., Glunz, S.W.: Influence of high-temperature processes on multicrystalline silicon. Solid State Phenom 95–96, 235–240 (2004)

    Google Scholar 

  187. Schultz, O., Glunz, S.W., Willeke, G.P.: Multicrystalline silicon solar cells exceeding 20% efficiency. Prog. Photovolt. Res. Appl. 12, 553–558 (2004)

    CAS  Google Scholar 

  188. Zhao, J., Wang, A., Altermatt, P., Wenham, S.R., Green, M.A.: 24% Efficient PERL silicon solar cell: recent improvements in high efficiency silicon cell research. Sol. Energy Mater. Sol. Cells 41–42, 87–99 (1996)

    Google Scholar 

  189. Zhao, J., Wang, A., Green, M.A., Ferrazza, F.: 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998)

    CAS  Google Scholar 

  190. Zhao, J., Wang, A., Green, M.A.: 4.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on Fz substrates. Prog. Photovolt. Res Appl. 7, 471–474 (1999)

    CAS  Google Scholar 

  191. Zhao, J., Wang, A., Green, M.A.: Performance degradation in Cz(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SHE MCZ(B), Fz(B) and Cz(Ga) substrates. Prog. Photovolt. Res. Appl. 8, 549–558 (2000)

    CAS  Google Scholar 

  192. Zhao, J., Wang, A., Green, M.A.: 24.5% efficiency PERT silicon solar cells on SHE MCZ substrates and cell performance on other SHE Cz and Fz substrates. Sol. Energy Mater. Sol. Cells 66, 27–36 (2001)

    CAS  Google Scholar 

  193. Green, M.A., Zhao, J., Wang, A.: 23% PV module and other silicon solar cell advances. Proc. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, pp. 1187–1192 (1998)

    Google Scholar 

  194. Hahn, G.: Status of selective emitter technology. Proceedings of the 25th EU PVSEC/WCPEC, Valencia, Spain (2010)

    Google Scholar 

  195. Campbell, P., Green, M.A.: Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243 (1987)

    Google Scholar 

  196. Zhao, J., Wang, A., Green, M.A.: Series resistance caused by the localized rear contact in high-efficiency silicon solar-cells. Sol. Energy Mater. Sol. Cells 32, 89 (1994)

    CAS  Google Scholar 

  197. Wang, A.: Ph.D. Thesis, University of New South Wales, p. 111 (1992)

    Google Scholar 

  198. Suwito, D., Jäger, U., Benick, J., Janz, S., Hermle, M., Glunz, S.W.: Industrially feasible rear passivation and contacting scheme for high-efficiency n-type solar cells yielding a Voc of 700 mV. IEEE Trans. Electron Devices 57, 2032 (2010)

    CAS  Google Scholar 

  199. Richter, A., Hörteis, M., Benick, J., Henneck, S., Hermle, M., Glunz, S.W.: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010. IEEE, New York (2010)

    Google Scholar 

  200. Colville, F.: Laser-assisted selective emitters and the role of laser doping. Technical papers in Photovoltaic International Magazine, 5th edn., pp. 1–6 (2010)

    Google Scholar 

  201. Antoniadis, H.: Silicon ink high efficiency solar cells. Proceedings of the 34th IEEE Photovoltaics Specialists Conference, Philadelphia (2009)

    Google Scholar 

  202. Antoniadis, H., Jiang, F., Shan, W., Liu, Y.: All screen printed mass production silicon ink selective emitter solar cells. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu (2010)

    Google Scholar 

  203. Esturo-Breton, A., Binaie, F., Breselge, M., Friess, T., Geiger, M., Holbig, E., Isenberg, J., Keller, S., Kuehn, T., Maier, J., Muenzer, A., Schlosser, R., Schmid, A., Voyer, C., Winter, P., Bayer, K., Kruemberg, J., Henze, S., Melnyk, I., Schmidt, M., Klingbeil, S., Walter, F., Kopecek, R., Peter, K.: Crystalline silicon solar cells with selective emitter for industrial mass production. Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, pp. 1068–1071 (2009)

    Google Scholar 

  204. Low, R.J., Gupta, A., Baterman, N.P., Ramappa, D., Sullivan, P., Skinner, W., Mullin, J., Peters, S., Weiss-Wallrath, H.: High efficiency selective emitter cells enabled through patterned ion implantation. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu (2010)

    Google Scholar 

  205. Haverkamp, H., Dastgheib-Shirazi, A., Raabe, B., Book, F., Hahn, G.: Minimizing the electrical losses on the front side: development of a selective emitter process from a single diffusion. Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, Diego (2008)

    Google Scholar 

  206. Eisele, S.J., Röder, T.C., Köhler, J.R., Werner, J.H.: 18.9% efficient full area laser doped silicon solar cell. Appl. Phys. Lett. 95, 133501 (2009)

    Google Scholar 

  207. Röder, T.C., Eisele, S.J., Grabitz, P., Wagner, C., Kulushich, G., Köhler, J.R., Werner, J.H.: Add-on laser tailored selective emitter solar cells. Prog. Photovolt. Res. Appl. 18, 505–510 (2010)

    Google Scholar 

  208. Kray, D., Bay, N., Cimiotti, G., Kleinschmidt, S., Kösterke, N., Lösel, A., Sailer, M., Träger, A., Kühnlein, H., Nussbaumer, H., Fleischmann, C., Granek, F.: Industrial LCP industrial emitter solar cells with plated contacts. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, (2010)

    Google Scholar 

  209. Tjahjono, B.S., Wu, V., Anditsch, H.T., Cheng, J., Ting, J., Yang, M.J., Sziptalak, T., Beilby, B., Hsu, K.C.: Optimizing selective emitter technology in one year of full scale production. Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, pp. 901–905 (2011)

    Google Scholar 

  210. Tjahjono, B.S., Yang, M.J., Lan, C.Y., Ting, J., Sugianto, A., Ho, H., Kuepper, N., Beilby, B., Szpitalak, T., Wenham, S.R.: 18.9% efficient laser doped selective emitter solar cell on industrial grade p-type czochralski wafer. Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, pp. 1396–1400 (2010)

    Google Scholar 

  211. Shi, Z., Wenham, S., Ji, J.: Mass production of the innovative Pluto solar cell technology. Proceedings of the 34th IEEE Photovoltaics Specialists Conference, Philadelphia (2010)

    Google Scholar 

  212. Green, M.A., Zhao, J., Wang, A., Wenham, S.R.: Progress and outlook for high efficiency crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 65, 9–16 (2001)

    CAS  Google Scholar 

  213. Shi, Z., Wenham, S., Ji, J., Partlin, S., Sugianoto, A.: Suntech whitepaper: mass production of the innovative Pluto solar cell technology. http://am.suntech-power.com/images/stories/pdf/other/whitepaper_final_081511.pdf. Retrieved 16 Oct 2011

  214. Wenham, S.: Multi-gigawatt manufacturing in China. Invited Plenary session Paper presented at the 37th IEEE Photovoltaics Specialists Conference, Seattle (2011)

    Google Scholar 

  215. Wenham, S.: Bouried-contact silicon solar cells. Prog. Photovolt. Res. Appl. 1, 3–10 (1993)

    CAS  Google Scholar 

  216. Hameiri, Z.: Laser-doped selective emitter and local back surface field solar cells with rear passivation. Ph.D. Thesis, The University of New South Wales, Sydney (2010)

    Google Scholar 

  217. Wang, Z., Han, P., Lu, H., Qian, H., Chen, L., Meng, Q., Tang, N., Gao, F., Jiang, Y., Wu, J., Wu, W., Zhu, H., Ji, J., Shi, Z., Sugianto, A., Mai, L., Hallam, B., Wenham, S.: Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers. Prog. Photovolt. Res. Appl. 20, 260–268 (2012)

    CAS  Google Scholar 

  218. De Ceuster, D., Cousins, P., Rose, D., Vicente, D., Tipones, P., Mulligan, W.: Low cost, high volume production of >22% efficiency silicon solar cells. Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, pp. 816–819 (2007)

    Google Scholar 

  219. Macdonald, D., Geerligs, L.J.: Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Appl. Phys. Lett. 85, 4061 (2004)

    CAS  Google Scholar 

  220. Engelhart, P., Harder, N.-P., Grischke, R., Merkle, A., Meyer, R., Brendel, R.: Laser structuring for back junction silicon solar cells. Prog. Photovolt. Res. Appl. 15, 237 (2007)

    CAS  Google Scholar 

  221. Granek, F., Hermle, M., Reichel, C., Schultz-Wittmann, O., Glunz, S.W.: High-efficiency back-contact back-junction silicon solar cell research at Fraunhofer ISE. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, pp. 991–995 (2008)

    Google Scholar 

  222. Guo, J.-H., Tjahjono, B.S., Cotter, J.E.: 19.2% efficiency n-type laser-grooved silicon solar cells. Proceedings of the 31st IEEE Photovoltaic Specialist Conference, Orlando, FL, pp. 983–986 (2005)

    Google Scholar 

  223. Gong, C., Van Kerschaver, E., Robbelein, J., Janssens, T., Posthuma, N., Poortmans, J., Mertens, R.: Screen-printed aluminum-alloyed p+ emitter on high-efficiency n-type interdigitated back-contact silicon solar cells. IEEE Electron Devices Lett. 31, 576 (2010)

    CAS  Google Scholar 

  224. Kluska, S., Granek, F., Rüdiger, M., Hermle, M., Glunz, S.W.: Modeling and optimization study of industrial n-type high-efficiency back-contact back-junction silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 568 (2010)

    CAS  Google Scholar 

  225. Verlinden, P.J., Aleman, M., Posthuma, N., Fernandez, J., Pawlak, B., Robbelein, J., Debucquoy, M., Van Wichelen, K., Poortmans, J.: Simple power-loss analysis method for high-efficiency interdigitated back contact (IBC) silicon solar cells. Sol. Energy Mater. Sol. Cells 106, 37 (2012)

    CAS  Google Scholar 

  226. Castano, F.J., Morecroft, D., Cascant, M., Yuste, H., Lamers, M.W.P.E., Mewe, A.A., Romijn, I.G., Bende, E.E., Komatsu, Y., Weeber, A.W., Cesar, I.: Industrially feasible >19% efficiency IBC cells for pilot line processing. Proceedings of the 36th IEEE-PVSEC, Seattle, USA, pp. 1038–1042 (2011)

    Google Scholar 

  227. Reichel, C., Granek, F., Hermle, M., Glunz, S.W.: Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theorem. J. Appl. Phys. 109, 024507 (2011)

    Google Scholar 

  228. Granek, F., Hermle, M., Huljic, D.M., Schultz-Wittmann, O., Glunz, S.W.: Enhanced lateral current transport via the front n+ diffused layer of n-type high-efficiency back-junction back-contact silicon solar cells. Prog. Photovolt. Res. Appl. 17, 47 (2009)

    CAS  Google Scholar 

  229. Granek, F.: High-efficiency back-contact back-junction silicon solar cells. Ph.D. thesis, Fraunhofer ISE (2009)

    Google Scholar 

  230. Harder, N.-P., Mertens, V., Brendel, R.: Buried emitter solar cell structures: decoupling of metallization geometry and carrier collection geometry of back contacted solar cells. Phys Status Solidi (RRL) 2, 148 (2008)

    CAS  Google Scholar 

  231. Reichel, C., Granek, F., Hermle, M., Glunz, S.W.: Enhanced current collection in back-contacted back-junction Si solar cells by overcompensating a boron emitter with a phosphorus base-type doping. Phys. Status Solidi A 207, 1978 (2010)

    CAS  Google Scholar 

  232. Cousins, P.J., Smith, D.D, Luan, H.C., Manning, J., Dennis, T.D., Waldhauer, A., Wilson, K.E., Harley, G., Mulligan, G.P.: Gen III: improved performance at lower cost. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, pp. 823–826 (2010)

    Google Scholar 

  233. Bock, R., Mau, S., Schmidt, J., Brendel, R.: Back-junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter. Appl. Phys. Lett. 96, 263507 (2010)

    Google Scholar 

  234. Reichel, C., Reusch, M., Granek, F., Hermle, M., Glunz, S.W.: Decoupling charge carrier collection and metallization geometry of back-contacted back-junction silicon solar cells by using insulating thin films. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, pp. 1034–1038 (2010)

    Google Scholar 

  235. Gee, J.M., Schuber, W.K., Basore, P.A.: Emitter wrap-through solar cell. In: Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, Kentucky, USA, pp. 265–270 (1993)

    Google Scholar 

  236. Gee, J.M., Buck, M.E., Schuber, W.K., Basore, P.A.: Progress on the emitter wrap-through silicon solar cell. In: Proceedings of the 12th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, pp. 743–746 (1994)

    Google Scholar 

  237. Glunz, S.W., Dicker, J., Kray, D., Lee, J.Y., Preu, R., Rein, S., Schneiderlöchner, E., Sölter, J., Warta, W., Willeke, G.: High-efficiency cell structures for medium-quality silicon. In: Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, pp. 1287–1292 (2001)

    Google Scholar 

  238. Ulzhöfer, C., Altermatt, P.P., Harder, N.-P., Brendel, R.: Loss analysis of emitter-wrap-through silicon solar cells by means of experiment and three-dimensional device modeling. J. Appl. Phys. 107, 104509 (2010)

    Google Scholar 

  239. Engelhart, P., Teppe, A., Merkle, A., Grischke, R., Meyer, R., Harder, N.-P., Brendel, R.: The RISE-EWT solar cell-a new approach towards simple high efficiency silicon solar cells. In: Proceedings of the 17th Photovoltaic Solar Energy Conference, Shanghai, China, pp. 802–803 (2005)

    Google Scholar 

  240. Engelhart, P.: Ph.D. Thesis, University of Hannover (2007)

    Google Scholar 

  241. Hermann, S., Merkle, A., Ulzhöfer, C., Dorn, S., Feihaber, I., Berger, M., Friedrich, T., Brendemühl, T., Harder, N.-P., Ehlers, L., Weise, K., Meyer, R., Brendel, R.: Progress in emitter wrap-through solar cell fabrication on boron doped Czochralski-grown silicon. Sol. Energy Mater. Sol. Cells 95, 1069 (2011)

    CAS  Google Scholar 

  242. Sinton, R.A., Verlinden, P., Kane, D.E., Swanson, R.M.: Development efforts in silicon backside-contact solar cells. Proceedings of the 8th European Photovoltaic Solar Energy Conference, Florence, Italy, pp. 1472–1476 (1988)

    Google Scholar 

  243. Kray, D., Dicker, J., Osswald, D., Leimenstoll, A., Glunz, S.W., Zimmermann, W., Tentscher, K.-H., Strobl, G.: Progress in high-efficiency emitter-wrap-through cells on medium quality substrates. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, pp. 1340–1343 (2003)

    Google Scholar 

  244. Hermann, S., Engelhart, P., Merkle, A., Neubert, T., Brendemühl, T., Meyer, M., Harder, N.-P., Brendel, R.: 21.4%-efficient emitter wrap-through RISE solar cell on large area and picosecond laser processing of local contact openings. In: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, pp. 970–975 (2007)

    Google Scholar 

  245. Lim, B., Hermann, S., Bothe, K., Schmidt, J., Brendel, R.: Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilized efficiencies of 20%. Appl. Phys. Lett. 93, 162102 (2008)

    Google Scholar 

  246. Mingirulli, N., Stüwe, D., Specht, J., Fallisch, A., Biro, D.: Screen-printed emitter-wrap-through solar cells with single step side selective emitter with 18.8% efficiency. Prog. Photovolt. Res. Appl. 19, 366 (2011)

    CAS  Google Scholar 

  247. Kiefer, F., Ulzhöfer, C., Brendemühl, T., Harder, N.-P., Brendel, R., Mertens, V., Bordihn, S., Peters, C., Müller, J.W.: High efficiency n-type Emitter-Wrap-Through silicon solar cells. IEEE J. Photovoltaics 1, 49 (2011)

    Google Scholar 

  248. Ulzhöfer, C., Hermann, S., Harder, N.-P., Altermatt, P.P., Brendel, R.: The origin of reduced fill factors of emitter-wrap-through-solar cells. Phys Status Solidi (RRL) 2, 251 (2008)

    Google Scholar 

  249. Fuhs, W., Niemann, K., Stuke, J.: Heterojunctions of amorphous silicon and silicon single-crystals. Bull. Am. Phys. Soc. 19, 394 (1974)

    Google Scholar 

  250. Takahama, T., Taguchi, M., Kuroda, S., Matsuyama, T., Tanaka, M., Tsuda, S., Nakano, S., Kuwano, Y.: High efficiency single- and poly-crystalline silicon solar cells using ACJ-HIT structure. Proceedings of the 11th EC PVSEC, Montreux, Switzerland, pp. 1057–1060 (1992)

    Google Scholar 

  251. Sawada, T., Terada, N., Tsuge, S., Baba, T., Takahama, T., Wakisaka, K., Tsuda, S., Nakano, S.: High efficiency a-Si/c-Si heterojunction solar cell. Conference Record of the 1st WCPEC, Hawaii, USA, pp. 1219–1226 (1994)

    Google Scholar 

  252. Tanaka, M., Okamoto, S., Tsuge, S., Kiyama, S.: Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules. Proceedings of the 3rd WCPEC, Osaka, Japan, pp. 955–958 (2003)

    Google Scholar 

  253. Taguchi, M., Tanaka, M., Matsuyama, T., Matsuoka, T., Tsuda, S., Nakano, S., Kishi, Y., Kuwano, Y.: Improvement of the conversion efficiency of polycrystalline silicon thin film solar cell. Technical Digest of the International PVSEC-5, Kyoto, Japan, pp. 689–692 (1990)

    Google Scholar 

  254. Kanno, H., Ide, D., Tsunomura, Y., Taira, S., Baba, T., Yoshimine, Y., Taguchi, M., Kinoshita, T., Sakata, H., Maruyama, E.: Over 20% efficient HIT solar cell. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, pp. 1136–1139 (2008)

    Google Scholar 

  255. Mishima, T., Taguchi, M., Sakata, H., Maruyama, E.: Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells 95, 18 (2011)

    CAS  Google Scholar 

  256. Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., Sakata, H., Maruyama, E.: High-efficiency HIT solar cell on thin (<100 μm) silicon wafer. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 1690–1693 (2009)

    Google Scholar 

  257. Schulze, T.F.: Structural, electronic and transport properties of amorphous/crystalline silicon heterojunctions. PhD thesis, HZB (2011)

    Google Scholar 

  258. Lachenal, D., Andrault, Y., Bätzner, D., Guerin, C., Kobas, M., Mendes, B., Strahm, B., Tesfai, M., Wahli, G., Buechel, A., Descoeudres, A., Choong, G., Bartlome, R., Barraud, L., Zicarelli, F., Bôle, P., Fesquet, L., Damon-Lacoste, J., De Wolf, D., Ballif, C.: High efficiency silicon heterojunction solar cell activities in Neuchatel, Switzerland. Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition and the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1272–1275 (2010)

    Google Scholar 

  259. Strahm, B., Andrault, Y., Baetzner, D., Guérin, C., Holmes, N., Kobas, M., Lachenal, D., Mendes, B., Tesfai, M., Wahli, G., Wuensch, F., Buechel, A., Mai, J., Schulze, T., Vogt, M.: Progress in silicon hetero-junction solar cell development and scaling for large scale mass production use. Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition and the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1286–1289 (2010)

    Google Scholar 

  260. Descoeudres, A., Barraud, L., Bartlome, R., Choong, G., De Wolf, S., Zicarelli, F., Ballif, C.: The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality. Appl. Phys. Lett. 97, 183505 (2010)

    Google Scholar 

  261. Descoeudres, A., Barraud, L., De Wolf, S., Strahm, B., Lachenal, D., Guérin, C., Holman, Z.C., Zicarelli, F., Demaurex, B., Seif, J., Holovsky, J., Ballif, C.: Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment. Appl. Phys. Lett. 99, 123506 (2011)

    Google Scholar 

  262. Wang, Q., Page, M.R., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H.-C., Duda, A., Hasoon, F., Yan, Y.F., Levi, D., Meier, D., Branz, H.M., Wang, T.H.: Efficient heterojunction solar cells on p-type crystal silicon wafers. Appl. Phys. Lett. 96, 013507 (2010)

    Google Scholar 

  263. Damon-Lacoste, J.: Ph.D. thesis, Ecole Polytechnique Paris (2007)

    Google Scholar 

  264. Froitzheim, A., Stangl, R., Elstner, L., Schmidt, M., Fuhs, W.: Interface recombination in amorphous/crystalline silicon solar cell, a simulation study. In: Conference Record of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, USA, pp. 1238–1241 (2002)

    Google Scholar 

  265. Hu, Z.H., Liao, X.B., Zeng, X.B., Xu, Y.Y., Zhang, S.B., Diao, H.W., Kong, G.L.: Computer simulation of a-Si:H/c-Si heterojunction solar cells. Acta Phys. Sin. 52, 217 (2003)

    CAS  Google Scholar 

  266. Emanuele, C., Daniele, I.: Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance. IEEE Electron Devices Lett. 24, 177 (2003)

    Google Scholar 

  267. Datta, A., Damon-Lacoste, J., Roca i Cabarrocas, P., Chatterjee, P.: Defect states on the surfaces of a p-type c-Si wafer and how they control the performance of a double heterojunction solar cell. Sol. Energy Mater. Sol. Cells 92, 1500 (2008)

    CAS  Google Scholar 

  268. Zhao, L., Zhou, C.L., Li, H.L., Diao, H.W., Wang, W.J.: Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation. Sol. Energy Mater. Sol. Cells 92, 673 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xiao, S., Xu, S. (2014). Status and Progress of High-efficiency Silicon Solar Cells. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_1

Download citation

Publish with us

Policies and ethics