Skip to main content

Electronic Properties of and Storage Times in Quantum Dots

  • Chapter
  • First Online:
Self-Organized Quantum Dots for Memories

Part of the book series: Springer Theses ((Springer Theses))

  • 736 Accesses

Abstract

The following chapter presents in detail the results obtained by capacitance spectrocopy measurements for various GaSb/GaAs quantum dot and quantum ring samples, as well as for an In\(_{0.25}\)Ga\(_{0.75}\)As/GaAs/GaP quantum dot sample. The outcome of the measurements are the electronic properties which characterize the quantum systems in their ability to trap and release holes. The key parameters are the localization energy and the apparent capture cross section for holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Nowozin, A. Marent, L. Bonato, A. Schliwa, D. Bimberg, E.P. Smakman, J.K. Garleff, P.M. Koenraad, R.J. Young, M. Hayne, Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots. Phys. Rev. B 86, 035305 (2012)

    Article  ADS  Google Scholar 

  2. G. Stracke, A. Glacki, T. Nowozin, L. Bonato, S. Rodt, C. Prohl, A. Lenz, H. Eisele, A. Strittmatter, A. Schliwa, U.W. Pohl, D. Bimberg, Growth of In\(_{0.25}\)Ga\(_{0.75}\)As quantum dots on GaP utilizing a GaAs interlayer. Appl. Phys. Lett. 101, 223110 (2012)

    Article  ADS  Google Scholar 

  3. T. Nowozin, L. Bonato, A. Högner, A. Wiengarten, D. Bimberg, W.-H. Lin, S.-Y. Lin, C.J. Reyner, B.L. Liang, D.L. Huffaker, 800 meV localization energy in GaSb/GaAs/Al\(_{0.3}\)Ga\(_{0.7}\)As quantum dots. Appl. Phys. Lett. 102, 052115 (2013)

    Article  ADS  Google Scholar 

  4. S.-Y. Lin, C.-C. Tseng, W.-H. Lin, S.-C. Mai, S.-Y. Wu, S.-H. Chen, J.-I. Chyi, Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode. Appl. Phys. Lett. 96, 123503 (2010)

    Article  ADS  Google Scholar 

  5. C.-C. Tseng, S.-C. Mai, W.-H. Lin, S.-Y. Wu, B.-Y. Yu, S.-H. Chen, S.-Y. Lin, J.-J. Shyue, M.-C. Wu, Influence of As on the morphologies and optical characteristics of GaSb/GaAs quantum dots. IEEE J. Quantum Electron. 47(3), 335 (2011)

    Article  ADS  Google Scholar 

  6. P.N. Brounkov, A. Polimeni, S.T. Stoddart, M. Henini, L. Eaves, P.C. Main, A.R. Kovsh, Y.G. Musikhin, S.G. Konnikov, Electronic structure of self-assembled InAs quantum dots in GaAs matrix. Appl. Phys. Lett. 73(8), 1092 (1998)

    Article  ADS  Google Scholar 

  7. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, A write time of 6 ns for quantum dot-based memory structures. Appl. Phys. Lett. 92(9), 092108 (2008)

    Article  ADS  Google Scholar 

  8. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akçay, N. Öncan, Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure. Appl. Phys. Lett. 94, 042108 (2009)

    Article  ADS  Google Scholar 

  9. C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, G. Abstreiter, Many-particle effects in Ge quantum dots investigated by time-resolved capacitance spectroscopy. Appl. Phys. Lett. 77(25), 4169 (2000)

    Article  ADS  Google Scholar 

  10. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, 450 meV hole localization energy in GaSb/GaAs quantum dots. Appl. Phys. Lett. 82(16), 2706–2708 (2003)

    Article  ADS  Google Scholar 

  11. A. Wiengarten, Type-II Nanostructures for a Novel Memory Device. Masterarbeit, Technische Universität Berlin (2012)

    Google Scholar 

  12. E.P. Smakman, J.K. Garleff, R.J. Young, M. Hayne, P. Rambabu, P. Koenraad, GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 100, 142116 (2012)

    Article  ADS  Google Scholar 

  13. O. Flebbe, H. Eisele, T. Kalka, F. Heinrichsdorff, A. Krost, D. Bimberg, M. Dähne-Prietsch, Atomic structure of stacked InAs quantum dots grown by metal-organic chemical vapor deposition. J. Vac. Sci. Technol. B 17(4), 1639 (1999)

    Article  Google Scholar 

  14. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  15. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, N. Öncan, 10[sup 6] years extrapolated hole storage time in GaSb/AlAs quantum dots. Appl. Phys. Lett. 91(24), 242109 (2007)

    Article  ADS  Google Scholar 

  16. A. Marent, T. Nowozin, M. Geller, D. Bimberg, The QD-Flash: a quantum dot-based memory device. Semicond. Sci. Technol. 26, 014026 (2011)

    Article  ADS  Google Scholar 

  17. W.-H. Lin, M.-Y. Lin, S.-Y. Wu, S.-Y. Lin, Room-temperature electro-luminescence of type-II GaSb/GaAs quantum rings. IEEE Photonics Technol. Lett. 24(14), 1203 (2012)

    Article  ADS  Google Scholar 

  18. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1998)

    Google Scholar 

  19. D. Bimberg (ed.), Semiconductor Nanostructures (Springer, Berlin, 2008)

    Google Scholar 

  20. M. Grundmann, O. Stier, D. Bimberg, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)

    Article  ADS  Google Scholar 

  21. L. Pedesseau, J. Even, A. Bondi, W. Guo, S. Richard, H. Folliot, C. Labbe, C. Cornet, O. Dehaese, A.L. Corre, O. Durand, S. Loualiche, Theoretical study of highly strained InAs material from first-principles modelling: application to an ideal QD. J. Phys. D: Appl. Phys. 41, 165505 (2008)

    Article  ADS  Google Scholar 

  22. A. Marent, Entwicklung einer neuartigen Quantenpunkt-Speicherzelle. Dissertation, Technische Universität Berlin, 2010

    Google Scholar 

  23. A. Beyer, J. Ohlmann, S. Liebich, H. Heim, G. Witte, W. Stolz, K. Volz, GaP heteroepitaxy on Si(001): correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure. J. Appl. Phys. 111, 083534 (2012)

    Article  ADS  Google Scholar 

  24. Landolt-Bornstein - Group III Condensed matter - Gallium phosphide (GaP), energies and capture cross sections of hole traps, in SpringerMaterials - The Landolt-Bornstein database, vol. 41A2b, doi: 10.1007/10860305_52 accessed December 2012

    Google Scholar 

  25. Landolt-Bornstein - Group III Condensed matter, in SpringerMaterials - The Landolt-Bornstein database (2012) vol. 41A2b, doi: 10.1007/b83098 accessed April 2012

    Google Scholar 

  26. J.R. Taylor, An introduction to error analysis (University Science Books, Sausalito, 1997)

    Google Scholar 

  27. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band-k.p theory. Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  28. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape and composition on piezoelectric pffects and the electronic properties of InGaAs/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)

    Article  ADS  Google Scholar 

  29. A.M. Högner, GaSb-Quantum Dots as Storage Units in Memory Cells. Diplomarbeit, Technische Universität Berlin (2010)

    Google Scholar 

  30. C. G. V. d. Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39(3), 1871 (1989).

    Google Scholar 

  31. S.M. North, P.R. Briddon, M.A. Cusack, M. Jaros, Electronic structure of GaSb/GaAs quantum dots. Phys. Rev. B 58(19), 12601 (1998)

    Article  ADS  Google Scholar 

  32. S.-H. Wei, A. Zunger, Calculated natural band offsets of all II-VI and III-V semiconductors: chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 72, 2011 (1998)

    Article  ADS  Google Scholar 

  33. H.-S. Ling, C.-P. Lee, Evolution of self-assembled InAs quantum ring formation. J. Appl. Phys. 102, 024314 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nowozin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowozin, T. (2014). Electronic Properties of and Storage Times in Quantum Dots. In: Self-Organized Quantum Dots for Memories. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01970-3_6

Download citation

Publish with us

Policies and ethics