Skip to main content

Fundamentals

  • Chapter
  • First Online:
Self-Organized Quantum Dots for Memories

Part of the book series: Springer Theses ((Springer Theses))

  • 759 Accesses

Abstract

The following chapter gives an overview of the fundamentals of this work. At first, semiconductor heterostructures are described, building the basis for MODFETs and quantum dots. An overview of the most common semiconductor memories used today, including their advantages and disadvantages, leads the way to the concept of a quantum dot-based memory device which is described at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Arthur, Molecular beam epitaxy. Surf. Sci. 500, 189–217 (2002)

    Article  ADS  Google Scholar 

  2. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, San Diego, 1999)

    Google Scholar 

  3. T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-Al\(_x\)Ga\(_{1-x}\)As heterojunctions. Jpn. J. Appl. Phys. 19, L225–L227 (1980)

    Article  ADS  Google Scholar 

  4. D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, N.T. Linh, Two-dimensional electron gas MESFET structure. Electron. Lett. 16(17), 667–668 (1980)

    Article  ADS  Google Scholar 

  5. I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109 (1970)

    Article  ADS  Google Scholar 

  6. D. Schicketanz, G. Zeidler, GaAs-Double-Heterostructure Lasers as Optical Amplifiers. IEEE J. Q. Electron. 11(2), 65–69 (1975)

    Google Scholar 

  7. Z.I. Alferov, R.F. Kazarinov, Semiconductor laser with electric pumping, Inventor’s certificate No. 181737 (1963) (in Russian)

    Google Scholar 

  8. H. Kroemer, A proposed class of hetero-junction injection lasers. Proc. IEEE 51(12), 1782 (1963)

    Article  Google Scholar 

  9. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  10. H. Kroemer, Barrier control and measurements: abrupt semiconductor heterojunctions. J. Vac. Sci. Technol. B 2(3), 433–439 (1984)

    Article  Google Scholar 

  11. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  12. J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  13. E. Conwell, V.F. Weisskopf, Theory of impurity scattering in semiconductors. Phys. Rev. 77(3), 388–390 (1950)

    Article  ADS  MATH  Google Scholar 

  14. R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665 (1978)

    Article  ADS  Google Scholar 

  15. C.T. Foxon, Three decades of molecular beam epitaxy. J. Cryst. Growth 251, 1–8 (2003)

    Article  ADS  Google Scholar 

  16. K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980)

    Google Scholar 

  17. K.v. Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58(3), 519–531 (1986)

    Google Scholar 

  18. M.J. Manfra, L.N. Pfeiffer, K.W. West, R.D. Picciotto, K.W. Baldwin, High mobility two-dimensional hole system in GaAs/AlGaAs quantum wells grown on (100) GaAs substrates. Appl. Phys. Lett. 86, 162106 (2005)

    Google Scholar 

  19. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures. (Wiley, Chichester, 1998)

    Google Scholar 

  20. D. Bimberg (ed.), Semiconductor Nanostructures (Springer, Berlin, 2008)

    Google Scholar 

  21. S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Single charge and confinement effects in nano-crystal memories. Appl. Phys. Lett. 69(9), 1232 (1996)

    Article  ADS  Google Scholar 

  22. K. Koike, K. Saitoh, S. Li, S. Sasa, M. Inoue, M. Yano, Room-temperature operation of a memory-effect AlGaAs/GaAs heterojunction field-effect transistor with self-assembled InAs nanodots. Appl. Phys. Lett. 76(11), 1464 (2000)

    Article  ADS  Google Scholar 

  23. H. Kim, T. Noda, T. Kawazu, H. Sakaki, Control of current hysteresis effects in a GaAs/n-AlGaAs quantum trap field effect transistor with embedded InAs quantum dots. Jpn. J. Appl. Phys. 39, 7100 (2000)

    Article  ADS  Google Scholar 

  24. G. Yusa, H. Sakaki, Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlAs field-effect transistor structures. Appl. Phys. Lett. 70(3), 345 (1997)

    Article  ADS  Google Scholar 

  25. C. Balocco, A.M. Song, M. Missous, Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures. Appl. Phys. Lett. 85(24), 5911–5913 (2004)

    Article  ADS  Google Scholar 

  26. D. Nataraj, N. Ooike, J. Motohisa, T. Fukui, Fabrication of one-dimensional GaAs channel-coupled InAs quantum dot memory device by selective-area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 87, 193103 (2005)

    Article  ADS  Google Scholar 

  27. A. Marent, T. Nowozin, J. Gelze, F. Luckert, D. Bimberg, Hole-based memory operation in an InAs/GaAs quantum dot heterostructure. Appl. Phys. Lett. 95, 242114 (2009)

    Article  ADS  Google Scholar 

  28. A. Marent, T. Nowozin, M. Geller, D. Bimberg, The QD-Flash: a quantum dot-based memory device. Semicond. Sci. Technol. 26, 014026 (2011)

    Article  ADS  Google Scholar 

  29. Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  30. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop’ev, Z.I. Alferov, U. Richter, P. Werner, U. Gösele, J. Heydenreich, Low threshold, large T\(_0\) injection laser emission from (InGa)As quantum dots. Electron. Lett. 30(17), 1416 (1994)

    Google Scholar 

  31. F. Heinrichsdorff, C. Ribbat, M. Grundmann, D. Bimberg, High-power quantum-dot lasers at 1100 nm. Appl. Phys. Lett. 76(5), 556–558 (2000)

    Article  ADS  Google Scholar 

  32. X. Huang, A. Stintz, H. Li, L.F. Lester, J. Cheng, K.J. Malloy, Passive mode-locking in 1.3 \(\upmu \)m two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825 (2001)

    Google Scholar 

  33. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M.G. Thompson, K.T. Tan, C. Marinelli, R.V. Penty, I.H. White, V.M. Ustinov, A.E. Zhukov, Y.M. Shernyakov, A.R. Kovsh, 35 GHz mode-locking of 1.3 \(\upmu \)m quantum dot lasers. Appl. Phys. Lett. 85, 843 (2004)

    Google Scholar 

  34. F. Hopfer, A. Mutig, M. Kuntz, G. Fiol, D. Bimberg, N.N. Ledentsov, V.A. Shchukin, S.S. Mikhrin, D.L. Livshits, I.L. Krestnikov, A.R. Kovsh, N.D. Zakharov, P. Werner, Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth. Appl. Phys. Lett. 89, 141106 (2006)

    Article  ADS  Google Scholar 

  35. M. Lämmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A. R. Kovsh, N.N. Ledentsov, D. Bimberg, Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at 1.3 \(\upmu \)m using quantum dots. Electronics Lett. 42, 697 (2006)

    Google Scholar 

  36. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. Haisler, A. Toropov, A. Bakarov, A. Kalagin, Electrically driven single quantum dot polarised single photon emitter. Electron. Lett. 42(13), 774–775 (2006)

    Article  Google Scholar 

  37. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Töfflinger, A. Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler, D. Bimberg, Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl. Phys. Lett. 96, 093112 (2010)

    Article  ADS  Google Scholar 

  38. W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T.D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U.W. Pohl, D. Bimberg, Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl. Phys. Lett. 101(21), 211119 (2012)

    Article  ADS  Google Scholar 

  39. F.C. Frank, J.H.V.D. Merwe, Proc. Roy. Soc. Lond. A 98, 205 (1949)

    Google Scholar 

  40. M. Volmer, A. Weber, Zeitschr. f. phys. Chem. 119, 277 (1926)

    Google Scholar 

  41. V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999)

    Article  ADS  Google Scholar 

  42. I.N. Stranski, L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2B 146, 797 (1938)

    Google Scholar 

  43. K. Jacobi, Atomic structure of InAs quantum dots on GaAs. Prog. Surf. Sci. 71, 185–215 (2003)

    Article  ADS  Google Scholar 

  44. J. Marquez, L. Geelhaar, K. Jacobi, Atomically resolved structure of InAs quantum dots. Appl. Phys. Lett. 78(16), 2309–2311 (2001)

    Article  ADS  Google Scholar 

  45. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik —Band I und II, 2nd edn.(Gruyter, Berlin, 1999)

    Google Scholar 

  46. M. Grundmann, O. Stier, D. Bimberg, InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)

    Article  ADS  Google Scholar 

  47. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band-k.p theory. Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  48. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape and composition on piezoelectric effects and the electronic properties of InGaAs/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)

    Article  ADS  Google Scholar 

  49. R. Waser, Nanoelectronics and Information Technology (Wiley-VCH, Berlin, 2003)

    Google Scholar 

  50. R. Waser, Nanotechnology Volume 3: Information Technology I, Nanotechnology (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  51. J.E. Brewer, M. Gill, Nonvolatile Memory Tenchnologies with Emphasis on Flash (Wiley, Hoboken, 2008)

    Google Scholar 

  52. International Technology Roadmap for Semiconductors (ITRS), Executive Summary, 2011 edn. (2011), http://www.itrs.net

  53. P. Pavan, R. Bez, P. Olivo, E. Zanoni, Flash memory cells—an overview. Proc. IEEE 85(8), 1248–1271 (1997)

    Article  Google Scholar 

  54. R. Bez, E. Camerlenghi, A. Modeli, A. Visconti, Introduction to flash memory. Proc. IEEE 91(4), 489 (2003)

    Google Scholar 

  55. F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, S. Tanaka, A new flash EEPROM cell using triple polysilicon technology. IEEE IEDM Technical Digist, pp. 464–467 (1984)

    Google Scholar 

  56. M. Geller, A. Marent, D. Bimberg, Speicherzelle und Verfahren zum Speichern von Daten (Memory cell and method for storing data). International patent EP/2097904, 2006

    Google Scholar 

  57. A. Marent, M. Geller, T. Nowozin, D. Bimberg, Speicherzelle auf Basis von Nanostrukturen aus Verbindungshalbleitern, International patent application PCT/12/970,744, 2010

    Google Scholar 

  58. Landolt-Bornstein—Group III Condensed Matter, in SpringerMaterials—the landolt-bornstein database, vol 41A2b. Accessed April 2012. doi:10.1007/b83098

  59. T. Müller, F.F. Schrey, G. Strasser, K. Unterrainer, Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots. Appl. Phys. Lett. 83(17), 3572–3574 (2003)

    Article  ADS  Google Scholar 

  60. M. Geller, A. Marent, E. Stock, D. Bimberg, V.I. Zubkov, I.S. Shulgunova, A.V. Solomonov, Hole capture into self-organized InGaAs quantum dots. Appl. Phys. Lett. 89(23), 232105 (2006)

    Article  ADS  Google Scholar 

  61. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, A write time of 6 ns for quantum dot-based memory structures. Appl. Phys. Lett. 92(9), 092108 (2008)

    Article  ADS  Google Scholar 

  62. M. Russ, C. Meier, B. Marquardt, A. Lorke, D. Reuter, A.D. Wieck, Quantum dot electrons as controllable scattering centers in the vicinity of a two-dimensional electron gas. Phase Transitions 79(9–10), 765–770 (2006)

    Article  Google Scholar 

  63. B. Marquardt, M. Geller, A. Lorke, D. Reuter, A.D. Wieck, Using a two-dimensional electron gas to study nonequilibrium tunneling dynamics and charge storage in self-assembled quantum dots. Appl. Phys. Lett. 95, 022113 (2009)

    Article  Google Scholar 

  64. M. Russ, C. Meier, A. Lorke, D. Reuter, A.D. Wieck, Role of quantum capacitance in coupled low-dimensional electron systems. Phys. Rev. B 73, 115334 (2006)

    Article  ADS  Google Scholar 

  65. A. Rack, R. Wetzler, A. Wacker, E. Schöll, Dynamical bistability in quantum-dot structures: role of auger processes. Phys. Rev. B 66(16), 165429 (2002)

    Article  ADS  Google Scholar 

  66. A. Marent, Entwicklung einer neuartigen Quantenpunkt-Speicherzelle. Technische Universität Berlin, Dissertation, 2010

    Google Scholar 

  67. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, 450 meV hole localization energy in GaSb/GaAs quantum dots. Appl. Phys. Lett. 82(16), 2706–2708 (2003)

    Article  ADS  Google Scholar 

  68. A. Marent, M. Geller, D. Bimberg, A.P. Vasi’ev, E.S. Semenova, A.E. Zhukov, V.M. Ustinov, Carrier storage time of milliseconds at room temperature in self-organized quantum dots. Appl. Phys. Lett. 89(7), 072103 (2006)

    Article  ADS  Google Scholar 

  69. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, N. Öncan, 10[sup 6] years extrapolated hole storage time in GaSb/AlAs quantum dots. Appl. Phys. Lett. 91(24), 242109 (2007)

    Article  ADS  Google Scholar 

  70. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akçay, N. Öncan, Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure. Appl. Phys. Lett. 94, 042108 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nowozin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowozin, T. (2014). Fundamentals. In: Self-Organized Quantum Dots for Memories. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01970-3_2

Download citation

Publish with us

Policies and ethics