Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

The rapid proliferation of wireless technology offers the promise of many societal and individual benefits by enabling pervasive networking and communication via personal devices such as smartphones, PDAs, computers. This explosion of wireless devices and mobile data creates an ever-increasing demand for more radio spectrum. The spectrum scarcity issue is expected to occur due to the limited spectrum resources. However, previous studies [15] have shown that the usage of many spectrum bands (e.g., UHF bands) is inefficient, which motivates the concept of cognitive radio networks (CRNs) [22, 24, 25]. In CRNs, secondary (unlicensed) users (SUs) are allowed to access licensed spectrum bands given that it only incurs minimal tolerable or no interference to primary (licensed) users (PUs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CogNeA: Cognitive Networking Alliance. http://www.cognea.org.

  2. IEEE 802.22 WRAN WG on Broadband Wireless Acess Standards. http://www.ieee802.org/22.

  3. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. ACM SIGMOD International Conference on Management of Data (SIGMOD), 2000.

    Google Scholar 

  4. H. Ahmadi, N. Pham, R. Ganti, T. Abdelzaher, S. Nath, and J. Han. Privacy-aware regression modeling of participatory sensing data. In Proc. ACM Conference on Embedded Networked Sensor Systems (SenSys), 2010.

    Google Scholar 

  5. E. Beinat. Privacy and location-based: Stating the policies clearly. In GeoInformatics, pages 14–17, 2001.

    Google Scholar 

  6. A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In Proc. ACM STOC, 2008.

    Google Scholar 

  7. D. Cabric, S.M. Mishra, and R.W. Brodersen. Implementation issues in spectrum sensing for cognitive radios. In Proc. IEEE Asilomar conf, Signals, Systems, and Computers, volume 1, pages 772–776, 2004.

    Google Scholar 

  8. D. Chen, S. Yin, Q. Zhang, M. Liu, and S. Li. Mining spectrum usage data: a large-scale spectrum measurement study. In Proc. ACM International Conference on Mobile Computing and Networking (MobiCom), pages 13–24, 2009.

    Google Scholar 

  9. H. Chen and W. Gao. Btext on cyclostationary feature detector - information annex on sensing techniques. IEEE 802.22 Meeting Doc., 2007.

    Google Scholar 

  10. R. Chen, N. Mohammed, B.C.M. Fung, B.C. Desai, and L. Xiong. Publishing set-valued data via differential privacy. International Conference on Very Large Databases (VLDB), 4(11), 2011.

    Google Scholar 

  11. T.C. Clancy. Formalizing the interference temperature model. Wireless Communications and Mobile Computing, 7(9):1077–1086, 2007.

    Article  Google Scholar 

  12. Federal Communications Commission. Spectrum policy task force report. ET Docket No. 02-135, 2002.

    Google Scholar 

  13. Federal Communications Commission. Establishment of interference temperature metric to quantify and manage interference and to expand available unlicensed operation in certain fixed mobile and satellite frequency bands. ET Docket No. 03-289, 2003.

    Google Scholar 

  14. Federal Communications Commission. Facilitating opportunities for flxible, efficient, and reliable spectrum use employing cognitive radio technologies. ET Docket No. 03-108, 2003.

    Google Scholar 

  15. Federal Communications Commission. Notice of proposed rule making and order. ET Docket No. 03-322, 2003.

    Google Scholar 

  16. Federal Communications Commission. Second report and order. FCC 08-260, Nov. 2008.

    Google Scholar 

  17. Federal Communications Commission. Second memorandum opinion and order. FCC 10-174, 2010.

    Google Scholar 

  18. Federal Communications Commission. Third memorandum opinion and order. FCC 12-36, May 2012.

    Google Scholar 

  19. F.F. Digham, M.S. Alouini, and M.K. Simon. On the energy detection of unknown signals over fading channels. IEEE Trans. Commun., 55(1):21–24, 2007.

    Article  Google Scholar 

  20. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. pages 265–284, 2006.

    Google Scholar 

  21. X. Feng, J. Zhang, and Q. Zhang. Database-assisted multi-ap network on tv white spaces: Architecture, spectrum allocation and ap discovery. In Proc. IEEE New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pages 265–276, 2011.

    Google Scholar 

  22. A. Friedman and A. Schuster. Data mining with differential privacy. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2010.

    Google Scholar 

  23. Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao. Location privacy leaking from spectrum utilization information in database-driven cognitive radio network. In Proceedings of the 2012 ACM conference on Computer and communications security, Proc. ACM Computer and communications security, 2012.

    Google Scholar 

  24. Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao. Location privacy in database-driven cognitive radio networks: Attacks and countermeasures. In Proc. IEEE International Conference on Computer Communications (INFOCOM), 2013.

    Google Scholar 

  25. B. Gedik and L. Liu. Location privacy in mobile systems: A personalized anonymization model. In Proc. IEEE International Conference on Distributed Computing Systems (ICDCS), 2005.

    Google Scholar 

  26. A. Ghasemi and E.S. Sousa. Opportunistic spectrum access in fading channels through collaborative sensing. J. Commun., 2(2):71–82, 2007.

    Article  Google Scholar 

  27. J. Girao, D. Westhoff, and M. Schneider. Cda: Concealed data aggregation for reverse multicast traffic in wireless sensor networks. In Proc. IEEE International Conference on Communications (ICC), 2005.

    Google Scholar 

  28. M.M. Groat, W. He, and S. Forrest. KIPDA: k-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In Proc. IEEE International Conference on Computer Communications (INFOCOM), 2011.

    Google Scholar 

  29. S. Haykin, D.J. Thomson, and J.H. Reed. Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5):849–877, 2009.

    Article  Google Scholar 

  30. B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing security and privacy in traffic-monitoring systems. IEEE Perv. Comput., 5(4):38–46, 2006.

    Article  Google Scholar 

  31. J. Jia, Q. Zhang, and X. Shen. Hc-mac: A hardware-constrained cognitive mac for efficient spectrum management. IEEE J. Sel. Areas Commun., 26(1):106–117, 2008.

    Article  Google Scholar 

  32. J. Jia, Q. Zhang, Q. Zhang, and M. Liu. Revenue generation for truthful spectrum auction in dynamic spectrum access. In Proc. ACM symposium on Mobile ad hoc networking and computing (MobiHoc), pages 3–12, 2009.

    Google Scholar 

  33. V. Kindratenko, M. Pant, and D. Pointer. Deploying the olsr protocol on a network using sdr as the physical layer. Technical report, NCASSR Technical Report, UCLA, 2005.

    Google Scholar 

  34. K. Letaief and W. Zhang. Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5):878–893, 2009.

    Article  Google Scholar 

  35. S. Li, H. Zhu, Z. Gao, X. Guan, K. Xing, and X. Shen. Location privacy preservation in collaborative spectrum sensing. In Proc. IEEE International Conference on Computer Communications (INFOCOM), 2012.

    Google Scholar 

  36. B. Liu, Y. Jiang, F. Sha, and R. Govindan. Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In Proc. ACM Conference on Embedded Networked Sensor Systems (SenSys), 2012.

    Google Scholar 

  37. Y. Matsuo, N. Okazaki, K. Izumi, Y. Nakamura, T. Nishimura, K. Hasida, and H. Nakashima. Inferring long-term user properties based on users’ location history. In Proc. International Joint Conference on Artificial Intelligence (IJCAI), pages 2159–2165, 2007.

    Google Scholar 

  38. Microsoft. Location based services usage and perceptions survey. 2011.

    Google Scholar 

  39. B. Przydatek, D. Song, and A. Perrig. Sia: Secure information aggregation in sensor networks. In Proc. ACM Conference on Embedded Networked Sensor Systems (SenSys), 2003.

    Google Scholar 

  40. P. Samarati. Protecting respondents identities in microdata release. IEEE Trans. on Knowl. and Data Eng., 2001.

    Google Scholar 

  41. S.J. Shellhammer, S.Sh. N, R. Tandra, and J. Tomcik. Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs. In Proc. ACM International Workshop on Technology and Policy for accessing Spectrum (TAPAS), 2006.

    Google Scholar 

  42. M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Triandopoulos. Anonysense: A system for anonymous opportunistic sensing. J. Perv. Mobile Comput., 7(1):16–30, 2011.

    Google Scholar 

  43. L. Sweeney. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2002.

    Google Scholar 

  44. A. Taherpour, Y. Norouzi, M. Nasiri-Kenari, A. Jamshidi, and Z. Zeinalpour-Yazdi. Asymptotically optimum detection of primary user in cognitive radio networks. Communications, IET, 1(6):1138–1145, 2007.

    Article  Google Scholar 

  45. K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G.M. Voelker. Sora: high-performance software radio using general-purpose multi-core processors. Comm. ACM, 54(1):99–107, 2011.

    Article  Google Scholar 

  46. R. Tandra and A. Sahai. Snr walls for signal detection. IEEE J. Sel. Topics in Signal Processing, 2(1):4–17, 2008.

    Article  Google Scholar 

  47. C. Tang. Obama administration calls for “privacy bill of rights”. 2011.

    Google Scholar 

  48. P.K. Varshney and C.S. Burrus. Distributed detection and data fusion. Springer-Verlag New York, Inc., 1997.

    Book  Google Scholar 

  49. K. Vu, R. Zheng, and J. Gao. Efficient algorithms for k-anonymous location privacy in participatory sensing. In Proc. IEEE International Conference on Computer Communications (INFOCOM), 2012.

    Google Scholar 

  50. A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Statist., 16(2):117–186, 1945.

    Article  MATH  MathSciNet  Google Scholar 

  51. S.B. Wicker. The loss of location privacy in the cellular age. Commun. ACM, 55(8):60–68, 2012.

    Article  Google Scholar 

  52. J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differentially private histogram publication. In Proc. IEEE International Conference on Data Engineering (ICDE), 2012.

    Google Scholar 

  53. Q. Zhang, J. Jia, and J. Zhang. Cooperative relay to improve diversity in cognitive radio networks. Communications Magazine, IEEE, 47(2):111–117, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Wang, W., Zhang, Q. (2014). Introduction. In: Location Privacy Preservation in Cognitive Radio Networks. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-01943-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01943-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01942-0

  • Online ISBN: 978-3-319-01943-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics