Skip to main content

DNA Reservoir Computing: A Novel Molecular Computing Approach

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Abstract

We propose a novel molecular computing approach based on reservoir computing. In reservoir computing, a dynamical core, called a reservoir, is perturbed with an external input signal while a readout layer maps the reservoir dynamics to a target output. Computation takes place as a transformation from the input space to a high-dimensional spatiotemporal feature space created by the transient dynamics of the reservoir. The readout layer then combines these features to produce the target output. We show that coupled deoxyribozyme oscillators can act as the reservoir. We show that despite using only three coupled oscillators, a molecular reservoir computer could achieve 90% accuracy on a benchmark temporal problem.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  2. Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: Carbone, A., Pierce, N.A. (eds.) DNA11. LNCS, vol. 3892, pp. 38–54. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI - Künstliche Intelligenz 26(4), 365–371 (2012)

    Article  Google Scholar 

  4. Smerieri, A., Duport, F., Paquot, Y., Schrauwen, B., Haelterman, M., Massar, S.: Analog readout for optical reservoir computers. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems, pp. 953–961. Curran Associates, Inc (2012)

    Google Scholar 

  5. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Scientific Reports 2 (2012)

    Google Scholar 

  6. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  7. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  8. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 159, German National Research Center for Information Technology, St. Augustin-Germany (2002)

    Google Scholar 

  9. Widrow, B., Lehr, M.: 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)

    Article  Google Scholar 

  10. Penrose, R.: A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51, 406–413 (1955)

    Article  MATH  Google Scholar 

  11. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  12. Sussillo, D., Barak, O.: Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Computation 25(3), 626–649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)

    Article  Google Scholar 

  14. Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108, 128702 (2012)

    Article  Google Scholar 

  15. Krawitz, P., Shmulevich, I.: Basin entropy in boolean network ensembles. Phys. Rev. Lett. 98(15), 158701 (2007)

    Article  Google Scholar 

  16. Snyder, D., Goudarzi, A., Teuscher, C.: Computational capabilities of random automata networks for reservoir computing. Phys. Rev. E 87, 042808 (2013)

    Article  Google Scholar 

  17. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD Report 152, GMD-Forschungszentrum Informationstechnik (2002)

    Google Scholar 

  18. Rohlf, T., Gulbahce, N., Teuscher, C.: Damage spreading and criticality in finite random dynamical networks. Phys. Rev. Lett. 99(24), 248701 (2007)

    Article  Google Scholar 

  19. Natschläger, T., Maass, W.: Information dynamics and emergent computation in recurrent circuits of spiking neurons. In: Thrun, S., Saul, L., Schoelkpf, B. (eds.) Proc. of NIPS 2003, Advances in Neural Information Processing Systems, vol. 16, pp. 1255–1262. MIT Press, Cambridge (2004)

    Google Scholar 

  20. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation 16(7), 1413–1436 (2004)

    Article  MATH  Google Scholar 

  21. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation 22(5), 1272–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boedecker, J., Obst, O., Mayer, N.M., Asada, M.: Initialization and self-organized optimization of recurrent neural network connectivity. HFSP Journal 3(5), 340–349 (2009)

    Article  Google Scholar 

  23. Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for a biomolecular computer. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 247–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Chou, H.P., Unger, M., Quake, S.: A microfabricated rotary pump. Biomedical Microdevices 3(4), 323–330 (2001)

    Article  Google Scholar 

  25. Galas, J.C., Haghiri-Gosnet, A.M., Estevez-Torres, A.: A nanoliter-scale open chemical reactor. Lab Chip 13, 415–423 (2013)

    Article  Google Scholar 

  26. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nature Communications 2 (2011)

    Google Scholar 

  27. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  28. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  29. Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular automaton to play a game. Nature Nanotechnology 5(11), 773–777 (2010)

    Article  Google Scholar 

  30. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)

    Article  Google Scholar 

  31. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)

    Article  Google Scholar 

  32. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    Article  Google Scholar 

  33. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  34. Jones, B., Stekel, D., Rowe, J., Fernando, C.: Is there a liquid state machine in the bacterium Escherichia coli? In: IEEE Symposium on Artificial Life, ALIFE 2007, pp. 187–191 (2007)

    Google Scholar 

  35. Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Networks 20(3), 290–297 (2007)

    Article  MATH  Google Scholar 

  36. Modi, S., Nizak, C., Surana, S., Halder, S., Krishnan, Y.: Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nano 8(6), 459–467 (2013)

    Article  Google Scholar 

  37. Beyer, S., Dittmer, W., Simmel, F.: Design variations for an aptamer-based DNA nanodevice. Journal of Biomedical Nanotechnology 1(1), 96–101 (2005)

    Article  Google Scholar 

  38. Beyer, S., Simmel, F.C.: A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research 34(5), 1581–1587 (2006)

    Article  Google Scholar 

  39. Shapiro, E., Gil, B.: RNA computing in a living cell. Science 322(5900), 387–388 (2008)

    Article  Google Scholar 

  40. Dambre, J., Verstraeten, D., Schrauwen, B., Massar, S.: Information processing capacity of dynamical systems. Scientific Reports 2 (2012)

    Google Scholar 

  41. Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Towards a biomolecular learning machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 152–163. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goudarzi, A., Lakin, M.R., Stefanovic, D. (2013). DNA Reservoir Computing: A Novel Molecular Computing Approach. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics