Skip to main content

Probabilistic Reasoning with an Enzyme-Driven DNA Device

  • Conference paper
  • 1512 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Abstract

We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes’ law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagnosis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  3. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21(9), 1069–1074 (2003)

    Article  Google Scholar 

  4. Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular automaton to play a game. Nature Nanotechnology 5(11), 773–777 (2010)

    Article  Google Scholar 

  5. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards Parallel Evaluation and Learning of Boolean μ-Formulas with Molecules 48, 105–114 (1997)

    Google Scholar 

  6. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  7. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-Free Nucleic Acid Logic Circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  8. Rodríguez-Patón, A., de Murieta, I.S., Sosík, P.: Autonomous resolution based on DNA strand displacement. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 190–203. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Sainz de Murieta, I., Rodríguez-Patón, A.: DNA biosensors that reason. Biosystems 109(2), 91–104 (2012)

    Article  MATH  Google Scholar 

  10. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  11. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  12. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  13. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  14. Kjelstrup, S., Bedeaux, D.: Non-Equilibrium Thermodynamics of Heterogeneous Systems. Series on Advances in Statistical Mechanics. World Scientific (2008)

    Google Scholar 

  15. Benenson, Y.: Synthetic biology with RNA: progress report. Current Opinion in Chemical Biology 16(3-4), 278–284 (2012)

    Article  Google Scholar 

  16. Weitz, M., Simmel, F.C.: Synthetic in vitro transcription circuits. Transcription 3(2), 87–91 (2012)

    Article  Google Scholar 

  17. Amos, M.: Theoretical and Experimental DNA Computation. Natural computing series. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  18. Walker, G.T., Little, M.C., Nadeau, J.G., Shank, D.D.: Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences 89(1), 392–396 (1992)

    Article  Google Scholar 

  19. Reif, J., Majumder, U.: Isothermal reactivating whiplash PCR for locally programmable molecular computation. Natural Computing 9, 183–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Molecular Systems Biology 7(1) (2011)

    Google Scholar 

  21. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proceedings of the National Academy of Sciences 109(47), E3212–E3220 (2012)

    Google Scholar 

  22. Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano 7(1), 27–34 (2013)

    Article  Google Scholar 

  23. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Mathematical Biosciences 23(3-4), 351–379 (1975)

    Article  MathSciNet  Google Scholar 

  24. Sainz de Murieta, I., Rodríguez-Patón, A.: Probabilistic reasoning with a bayesian DNA device based on strand displacement. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 110–122. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Johnson, K.A., Goody, R.S.: The original michaelis constant: Translation of the, michaelis-menten paper. Biochemistry 50(39), 8264–8269 (1913)

    Article  Google Scholar 

  26. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49(1), 8–30 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sainz de Murieta, I., Rodríguez-Patón, A. (2013). Probabilistic Reasoning with an Enzyme-Driven DNA Device. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics