Skip to main content

Extending DNA-Sticker Arithmetic to Arbitrary Size Using Staples

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Abstract

The simple-sticker model uses robotic processing of DNA strands contained in a fixed number of tubes to implement massively-parallel processing of bit strings. The bits whose value are ‘1’ are recorded by short DNA “stickers” that hybridize at specific places on the strand. Other DNA models, like folded origami, use “staples” that hybridize to disjoint portions of a single strand. This paper proposes an extended-sticker paradigm that uses staples to hybridize to contiguous portions of two substrands, forming virtual strands. The problem of redundant bits is solved by blotting out old values. As an example of the novel extended-sticker paradigm, a log-time summation algorithm outperforms (with an ideal implementation) any electronic supercomputer conceivable in the near future for large data sets. JavaScript and CUDA simulations validate the theoretical operation of the proposed algorithm.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Arnold, M.G.: An Improved DNA-Sticker Addition Algorithm and Its Application to Logarithmic Arithmetic. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 34–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Arnold, M.G.: Improved DNA-sticker Arithmetic: Tube-Encoded-Carry, Logarithmic Number System and Monte-Carlo Methods. Natural Computing (2012), doi: 10.1007/s11047-012-9356-3

    Google Scholar 

  4. Brijder, R., Gillis, J.J.M., Van den Bussche, J.: Graph-theoretic formalization of hybridization in DNA sticker complexes. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 49–63. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Chang, W.-L., et al.: Fast Parallel Molecular Algorithms for DNA-Based Computation: Factoring Integers. IEEE Trans. Nanobiosci. 4, 149–163 (2005)

    Article  Google Scholar 

  6. Chakrabarthy, K., et al.: Design Tools for Digital Microfluidic Biochips. IEEE Trans. Comp.-Aid. Des. 29, 1001–1017 (2010)

    Article  Google Scholar 

  7. Chen, K., Winfree, E.: Error Correction in DNA Computing: Misclassification and Strand Loss. DNA-Based Computing 5, 49–63 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Fobel, R., Fobel, C., Wheeler, A.R.: Dropbot: An Open-Source Digital Microfluidic Control System with Precise Control of Electrostatic Driving Force and Instantaneous Drop Velocity Measurement. Appl. Phys. Lett. 102, 193513 (2013)

    Article  Google Scholar 

  9. Grover, W.H.: Microfluidic Molecular Processors for Computation and Analysis. Ph.D. Dissertation, Chemistry Dept., University Of California, Berkeley (2006)

    Google Scholar 

  10. Guo, P., Zhang, H.: DNA Implementation of Arithmetic Operations. In: 2009 Int. Conf. Natural Comp., pp. 153–159 (2009)

    Google Scholar 

  11. Hartemink, A.J., Gifford, D.K.: Thermodynamic Simulation of Deoxyoligonucleotide Hybridization for DNA Computation. DIMACS 48, 15–25 (1999)

    MATH  Google Scholar 

  12. Ignatova, Z., Martinez-Perez, I., Zimmermann, K.: DNA Computing Models, Sec. 5.3. Springer, New York (2008)

    Google Scholar 

  13. Knuth, D.E.: The Art of Computer Programming: 2 Seminumerical Algorithms, pp. 124–125. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  14. Makino, J., Taiji, M.: Scientific Simulations with Special-Purpose Computers—the GRAPE Systems. Wiley, Chichester (1998)

    MATH  Google Scholar 

  15. Martinez-Perez, I.M., Brandt, W., Wild, M., Zimmermann, K.: Bioinspired Parallel Algorithms for Maximum Clique Problems on FPGA Architectures. J. Sign Process. Syst. 58, 117–124 (2010)

    Article  Google Scholar 

  16. Parker, S., Pierce, B., Eggert, P.R.: Monte Carlo Arithmetic: How to Gamble with Floating Point and Win. Computing in Science and Engineering 2(4), 58–68 (2000)

    Article  Google Scholar 

  17. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. J. R. Soc. Interface (2011), doi:10.1098/rsif.2010.0729

    Google Scholar 

  18. Rothemund, P.K.W.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  19. Roweis, S., et al.: A Sticker-Based Model for DNA Computation. J. Comp. Bio. 5, 615–629 (1996)

    Article  Google Scholar 

  20. Roweis, S., Winfree, E.: On Reduction of Errors in DNA Computation. J. Computational Bio. 6, 65–75 (1998)

    Article  Google Scholar 

  21. JavaScript and CUDA DNA Sticker simulators, http://www.xlnsresearch.com/sticker.htm

  22. Yang, X.Q., Liu, Z.: DNA Algorithm of Parallel Multiplication Based on Sticker Model. Comp. Engr. App. 43(16), 87–89 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnold, M.G. (2013). Extending DNA-Sticker Arithmetic to Arbitrary Size Using Staples. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics