Skip to main content

Part of the book series: Springer Praxis Books ((POPULAR))

  • 1258 Accesses

Abstract

Our picture of the universe, we could argue, is much more advanced than that of our ancestor’s model of the universe. However, our simulations can crumble when we learn about the unknown. Among those unknowns in our universe are two constituents that make our understanding of the universe as fragile as that of our precursors. Dark energy and dark matter are synonyms of our ignorance, so to speak. Nonetheless, we have made tremendous progress in last several years to grasp these unknown forces that shape the future of our universe. While we celebrate our scientific advancement that has been made over centuries, dark energy and dark matter teach us to be humble.

Equipped with his five senses, man explores the universe around him and calls the adventure Science.”

–Edwin Hubble 1954

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    C = 3 × 108 m/s

  2. 2.

    Joule is the unit used to measure energy or work in International System of units.

References

  • Adam, G. R., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009–1038.

    Article  Google Scholar 

  • Ahmed, Z., et al. (2011). Search for inelastic dark matter with the CDMS II experiment. Physical Review D, 83. arXiv:1012.5078.

    Google Scholar 

  • Alwall, J., & Tandean, J. (2013). Heavy chiral fermions and dark matter. Advances in High Energy Physics, 2013. Article ID 915897, 15 pages. doi:10.1155/2013/915897.

  • Armendariz-Picon, C., Mukhanov, V., & Steinhardt, P. J. (2000). Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Physical Review Letters, 85, 4438–4441.

    Article  ADS  Google Scholar 

  • Barkana, R., & Loeb, A. (1999). The photoevaporation of dwarf galaxies during reionization. Astrophysical Journal, 523(1), 54–65.

    Article  ADS  Google Scholar 

  • Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: Evidence, candidates and constraints. Physics Reports, 405(5–6), 279–390.

    Article  ADS  Google Scholar 

  • Chandra:: Field guide to x-ray sources:: supernovas & supernova remnants. Available at: http://chandra.harvard.edu/xray_sources/supernovas.html. Accessed 2 Jan 2012.

  • Garrett, K., & Dūda, G. (2011). Dark matter: A primer. Advances in Astronomy, 2011. Article ID 968283, 22 pages. doi:10.1155/2011/968283.

  • Hubble, E. P. (1954). The nature of science, and other lectures (p. 6). California: Huntington Library.

    Google Scholar 

  • Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, 270, 365–370.

    Article  ADS  Google Scholar 

  • Mitchell, S. (2006). Bhagavad Gita: A new translation. New York: Three Rivers Press.

    Google Scholar 

  • Olga, M., et al. (2005). Constraining inverse curvature gravity with supernovae. Available: http://lss.fnal.gov/archive/2005/pub/fermilab-pub-05-466-t.pdf. Last Accessed 04 May 11.

  • Relativity and gravitation . 41, 207–224. Available at: http://link.springer.com/article/10.1007%2Fs10714-008-0707-4. Accessed 05 June 2010.

  • Riess, A. G., Filippenko, A. V., & Challis, P. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009–1038.

    Article  ADS  Google Scholar 

  • Rubin, V. C. (1983). Dark matter in spiral galaxies. Scientific American, 248(6), 96–108.

    Article  ADS  Google Scholar 

  • Rubin, V. (1996). Bright galaxies, dark matters (p. 147). New York: Springer Verlag.

    Google Scholar 

  • Sagan, C. (1985). Cosmos. New York: Ballantine Books.

    Google Scholar 

  • Science Magazine (2012). Available at: http://www.sciencemag.org/content/327/5973/1619.full. Accessed 27 Mar 2012.

  • Steinhardt, P. J. (1997). Cosmological challenges for the 21st century. In V. L. Fitch & D. R. Marlow (Eds.), Critical problems in physics. Princeton/New Jersey: Princeton University Press.

    Google Scholar 

  • Steinhardt, P. J. (2003). A quintessential introduction to dark energy. The Royal Society, 361(1812), 2497–2513.

    MATH  Google Scholar 

  • Steinhardt, P. J., & Turok, N. (2002). A cyclic model of the universe. Science, 296, 1436–1439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zlatev, I., Wang, L., & Steinhardt, P. J. (1998). Quintessence, cosmic coincidence and the cosmo-logical constant. Physical Review Letters, 82, 895.

    Google Scholar 

  • Zwicky, F. (1933). Spectral displacement of extra galactic nebulae. Helvetica Physica Acta, 6, 110–127.

    ADS  Google Scholar 

  • Zwicky, F. (1937). On the masses of nebulae and clusters of nebulae. The Astrophysical Journal, 86, 217–246.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mathew, S. (2014). Dark Forces in the Universe. In: Essays on the Frontiers of Modern Astrophysics and Cosmology. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-01887-4_6

Download citation

Publish with us

Policies and ethics