Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 261))

  • 1159 Accesses

Abstract

Least squares problems occur in various signal processing and statistical inference applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Agarwal, S. Negahban, and M. Wainwright. Fast global convergence rates of gradient methods for high-dimensional statistical recovery. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 37–45. 2010. long version available at http://arxiv.org/abs/1104.4824 arXiv:1104.4824v1 [stat.ML].

  • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): 183–202, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 27(3):265–274, Nov. 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Boufounos and R. Baraniuk. 1-bit compressive sensing. In Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on, pages 16–21, Mar. 2008.

    Google Scholar 

  • E. J. Candès. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9–10):589–592, 2008.

    Article  MATH  Google Scholar 

  • E. J. Candès and X. Li. Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. http://arxiv.org/abs/1208.6247 arXiv:1208.6247 [cs.IT], Aug. 2012.

  • E. J. Candès and T. Tao. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, Dec. 2006.

    Article  Google Scholar 

  • E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • E. J. Candès, T. Strohmer, and V. Voroninski. PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 2012. DOI 10.1002/cpa.21432.

    Google Scholar 

  • A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. Journal of American Mathematical Society, 22(1):211–231, Jan. 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5): 2230–2249, 2009.

    Article  MathSciNet  Google Scholar 

  • A. J. Dobson and A. Barnett. An Introduction to Generalized Linear Models. Chapman and Hall/CRC, Boca Raton, FL, 3rd edition, May 2008. ISBN 9781584889502.

    MATH  Google Scholar 

  • D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006.

    Article  MathSciNet  Google Scholar 

  • D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via â„“ 1 minimization. Proceedings of the National Academy of Sciences, 100(5): 2197–2202, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7): 2845–2862, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4): 586–597, Dec. 2007. ISSN 1932–4553. DOI 10.1109/JSTSP.2007.910281.

    Google Scholar 

  • S. Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants. In Approximation Theory XIII: San Antonio 2010, volume 13 of Springer Proceedings in Mathematics, pages 65–77, San Antonio, TX, 2012. Springer New York.

    Google Scholar 

  • E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for â„“ 1-minimization: methodology and convergence. SIAM Journal on Optimization, 19(3): 1107–1130, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  • X. Li and V. Voroninski. Sparse signal recovery from quadratic measurements via convex programming. http://arxiv.org/abs/1209.4785 arXiv:1209.4785 [cs.IT], Sept. 2012.

  • B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227–234, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 40–44, Pacific Grove, CA, Nov. 1993.

    Google Scholar 

  • Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev. Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing. Optics Express, 19(16):14807–14822, July 2011a.

    Article  Google Scholar 

  • Y. Shechtman, A. Szameit, E. Osherovic, E. Bullkich, H. Dana, S. Gazit, S. Shoham, M. Zibulevsky, I. Yavneh, E. B. Kley, Y. C. Eldar, O. Cohen, and M. Segev. Sparsity-based single-shot sub-wavelength coherent diffractive imaging. In Frontiers in Optics, OSA Technical Digest, page PDPA3. Optical Society of America, Oct. 2011b.

    Google Scholar 

  • J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

    Article  MathSciNet  Google Scholar 

  • Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM Journal on Scientific Computing, 32(4):1832–1857, 2010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahmani, S. (2014). Preliminaries. In: Algorithms for Sparsity-Constrained Optimization. Springer Theses, vol 261. Springer, Cham. https://doi.org/10.1007/978-3-319-01881-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01881-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01880-5

  • Online ISBN: 978-3-319-01881-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics