Skip to main content

Integrating Knowledge Engineering with Knowledge Discovery in Database: TOM4D and TOM4L

  • Chapter
  • First Online:
Innovations in Intelligent Machines-4

Part of the book series: Studies in Computational Intelligence ((SCI,volume 514))

Abstract

Knowledge Engineering (KE) provides resources to build a conceptual model from experts’ knowledge which is sometimes deficient to interpret the input data flow coming from a concrete process. On the other hand, data mining techniques in a process of Knowledge Discovery in Databases (KDD) can be used in order to obtain representative patterns of data which could allow to improve the model to be constructed. However, interpreting these patterns is difficult due to the gap which exists between the expert’s conceptual universe and that of the process instrumentation. This chapter proposes then a global approach which combines KE with KDD in order to allow the construction of Knowledge Models for Knowledge Based Systems from expert knowledge and knowledge discovered in data. This approach is grounded in the Theory of Timed Observations on which both a KE methodology and a KDD process are based, so that the resulting models can be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol \( \triangleq \) denotes rewriting or “corresponds to”.

References

  1. Le Goc, M.: Notion d’observation pour le diagnostic des processus dynamiques: Application à Sachem et à la découverte de connaissances temporelles. Habilitation à Diriger des Recherches. Université de Droit d’Economie et des Sciences d’Aix-Marseille (2006)

    Google Scholar 

  2. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  3. Dagues, P.: Théorie logique du diagnostic à base de modèles. Diagnostic, Intelligence Artificielle, et Reconnaissance des Formes, pp. 17–105. Hermes Science Publications, Paris (2001)

    Google Scholar 

  4. Pomponio, L.: Definition of a human-machine learning process from timed observations: application to the modelling behaviour of old people at home. Université Aix-Marseille (2012)

    Google Scholar 

  5. Pomponio, L., Le Goc, M.: Timed observations modelling for diagnosis methodology: a case study. In: Cordeiro, J.A.M., Virvou, M., Shishkov, B. (eds.) ICSoft 2010—Proceedings of the 5th International Conference on Software and Data Technologies, pp. 504–507. SciTePress, Athens (2010)

    Google Scholar 

  6. Le Goc M., Masse E., Curt C.: Modeling processes from timed observations. In: Proceedings of the 3rd International Conference on Software and Data Technologies (ICSoft’08), pp. 249–256 (2008)

    Google Scholar 

  7. Le Goc, M., Masse, E.: Towards a multimodeling approach of dynamic systems for diagnosis. In: Proceedings of the 2nd International Conference on Software and Data Technologies (ICSoft’07), pp. 277–282 (2007)

    Google Scholar 

  8. Le Goc, M., Ahdab, A.: Learning Bayesian Networks from Timed Observations. LAP LAMBERT Academic Publishing GmbH & Co, KG (2012)

    Google Scholar 

  9. Benayadi, N., Le Goc, M.: Mining timed sequences with TOM4L framework. In: Proceedings of the 12th International Conference on Enterprise Information Systems (ICEIS 2010), pp. 111–120 (2010)

    Google Scholar 

  10. Ahdab, A., Le Goc, M.: Learning dynamic bayesian networks with the TOM4L process. In: Proceedings of the 5th International Conference on Software and Data Technologies (ICSoft 2010), pp. 353–363 (2010)

    Google Scholar 

  11. Ahdab, A.: Contribution à l’apprendissage de réseaux bayésiens à partir de donnèes datées pour le diagnostic des processus dynamiques continus. Université Paul Cézanne, Aix-Marseille (2010)

    Google Scholar 

  12. Benayadi, N.: Contribution à la découverte de connaissances à partir de données datées. Université Paul Cézanne, Aix-Marseille III (2010)

    Google Scholar 

  13. Bouché, P.: Une approache stochastique de modélisation de séquences d’événements discrets pour le diagnostic des systèmes dynamiques. Université Paul Cézanne, Aix-Marseille III (2005)

    Google Scholar 

  14. Schreiber, G., Akkermans, H., Anjewierden, A., et al.: Knowledge Engineering and Management: the CommonKADS Methodology. MIT Press, Cambridge (2000)

    Google Scholar 

  15. Wickramasinghe, N.: Knowledge Creation. Encyclopedia of Knowledge Management, pp. 326–335. Idea Group Inc., Hershey (2006)

    Google Scholar 

  16. Nonaka, I.: Dynamic theory of organizational knowledge creation. Organ. Sci. 5, 14–37 (1994)

    Article  Google Scholar 

  17. Nonaka, I.: The knowledge-creating company. Harvard Bus. Rev. 96–104 (1991)

    Google Scholar 

  18. Alavi, M., Leidner, D.E.: Review: knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Quart 25, 107–136 (2001)

    Article  Google Scholar 

  19. Polanyi, M.: The Tacit Dimension. Doubleday & Company, Inc., NY (1966)

    Google Scholar 

  20. Nonaka, I., Konno, N.: The concept of “Ba”: building a foundation for knowledge creation. California Manage. Rev. 40, 40–54 (1998)

    Article  Google Scholar 

  21. Feigenbaum, E.A.: The art of artificial intelligence: 1. Themes and case studies of knowledge engineering. In: International Joint Conference on Artificial Intelligence, pp. 1014–1029 (1977)

    Google Scholar 

  22. Feigenbaum, E.A.: A personal view of expert systems: looking back and looking ahead. knowledge systems laboratory. Department of Computer Science, Stanford University (1992)

    Google Scholar 

  23. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles and Methods. Data Knowl. Eng. 25, 161–197 (1998)

    Article  MATH  Google Scholar 

  24. Breuker, J., de Velde, W.V.: CommonKADS Library For Expertise Modelling. IOS Press, Amsterdam (1994)

    Google Scholar 

  25. Gennari, J.H., Musen, M.A., Fergerson, R.W., et al.: The evolution of protégé: an environment for knowledge-based systems development. Int. J. Hum Comput Stud. 58, 89–123 (2002)

    Article  Google Scholar 

  26. Angele, J., Fensel, D., Landes, D., Studer, R.: Developing knowledge based-systems with MIKE. Autom. Soft. Eng. 5, 389–418 (1998)

    Article  Google Scholar 

  27. Angele, J., Fensel, D., Studer, R.: Domain and task modeling in MIKE. In: Proceedings of the IFIP WG8.1/13.2 Joint Working Conference on Domain Knowledge for Interactive System Design, pp. 8–10 (1996)

    Google Scholar 

  28. Cairó, O., Alvarez, J.C.: KAMET II: an extended knowledge-acquisition methodology. In: Palade, V., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 61–67. Springer, London (2003)

    Google Scholar 

  29. Cairó, O., Alvarez, J.C.: The KAMET II Methodology: A Modern Approach for Building Diagnosis-Specialized Knowledge-Based Systems ISMIS, pp. 652–656. Springer, London (2003)

    Google Scholar 

  30. Motta, E., Stutt, A., O’Hara, K. et al.: VITAL knowledge representation language specification. Human Cognition Research Laboratory of the Open University (1991)

    Google Scholar 

  31. Piatetsky-Shapiro, G.: Knowledge discovery in real databases: a report on the IJCAI-89 workshop. IA Mag. 11, 68–70 (1990)

    Google Scholar 

  32. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. IA Mag. 17, 37–57 (1996)

    Google Scholar 

  33. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39, 29–34 (1996)

    Google Scholar 

  34. Quinlan, J.R: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  35. Rabiner L.R. : A tutorial on hidden Markov models and selected applications in speech recognition. In: Proceedings of the IEEE 77, pp. 257 –286 (1989)

    Google Scholar 

  36. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Morgan Kaufmann, Tioga (1983)

    Google Scholar 

  37. Cheng, J., Greiner, R., Kelly, J., et al.: Learning bayesian networks from data: an information-theory based approach. Artif. Intell. 137, 43–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20, 364–366 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mitchell T.: Machine Learning. McGraw Hill, NY (1977)

    Google Scholar 

  40. Chittaro, L., Guida, G., Tasso, C., Toppano, E.: Functional and teleological knowledge in the multimodeling approach for reasoning about physical systems: a case study in diagnosis. IEEE Trans. Sys. Man Cybern. 23, 1718–1751 (1993)

    Article  Google Scholar 

  41. Le Goc, M.: SACHEM, a real-time intelligent diagnosis system based on the discrete event paradigm. Simulation 80, 591–617 (2004)

    Article  Google Scholar 

  42. Chittaro, L., Ranon, R.: Diagnosis of multiple faults with flow-based functional models: the functional diagnosis with efforts and flows approach. Reliab. Eng. Syst. Safety 64, 137–150 (1999)

    Article  Google Scholar 

  43. Zanni, C., Le Goc, M., Frydman, C.: A conceptual framework for the analysis, classification and choice of knowledge-based diagnosis systems. KES—Int. J. Knowl. Based Intell. Eng. Syst. 10, 113–138 (2006)

    Google Scholar 

  44. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rosenberg, R.C., Karnopp, D.C.: Introduction to Physical System Dynamics. McGraw-Hill, NY (1983)

    Google Scholar 

  46. Chittaro, L., Ranon, R.: Augmenting the diagnostic power of flow-based approaches to functional reasoning. In: AAAI-96 Proceedings, pp. 1010–1015 (1996)

    Google Scholar 

  47. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cheng, J., Bell, D., Liu, W.: Learning bayesian networks from data: an efficient approach based on information theory (1997)

    Google Scholar 

  49. Bouché, P., Le Goc, M., Coinu, J.: A global model of sequences of discrete event class occurrences. In: Proceedings of the 10th International Conference on Enterprise Information Systems (ICEIS 2008), pp. 173–180 (2008)

    Google Scholar 

  50. Fakhfakh I., Curt C., Le Goc M., Torrès L.: Diagnosis of the Hydraulic Dam Safety based on Multimodelling Approach. Actes du 18ème Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement (2012)

    Google Scholar 

  51. Pomponio, L., Le Goc, M., Pascual, E., Anfosso, A.: Discovering models of human’s behavior from sensor’s data. In: Workshop Proceedings of the 7th International Conference on Intelligent Environments, pp. 17–28. IOS Press, Nottingham, 25–26 July 2011

    Google Scholar 

  52. Pomponio, L., Le Goc, M., Anfosso, A., Pascual, E.: Levels of abstraction for behavior modeling in the GerHome project. Int. J. E-Health Med. Commun. 3, 12–28 (2012)

    Article  Google Scholar 

  53. Pomponio, L., Le Goc, M., Pascual, E., Anfosso, A.: Resident’s activity at different abstraction levels: proposition of a general theoretical framework. In: The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2011, pp. 540–545, Prague (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Pomponio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pomponio, L., Le Goc, M. (2014). Integrating Knowledge Engineering with Knowledge Discovery in Database: TOM4D and TOM4L. In: Faucher, C., Jain, L. (eds) Innovations in Intelligent Machines-4. Studies in Computational Intelligence, vol 514. Springer, Cham. https://doi.org/10.1007/978-3-319-01866-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01866-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01865-2

  • Online ISBN: 978-3-319-01866-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics