Advertisement

Spatial Indexes for Simplicial and Cellular Meshes

  • Riccardo Fellegara
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 241)

Abstract

We address the problem of performing spatial and topological queries on simplicial and cellular meshes. These arise in several application domains including 3D GIS, scientific visualization and finite element analysis. Firstly, we present a family of spatial indexes for tetrahedral meshes, that we call tetrahedral trees. Then, we present the PR-star octree, that is a combined spatial data structure for performing efficient topological queries on simplicial meshes. Finally, we propose to extend these frameworks to arbitrary dimensions and to larger class of meshes, such as non-simplicial meshes.

Keywords

Leaf Node Tetrahedral Mesh Spatial Index Spatial Query Simplicial Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canino, D., De Floriani, L., Weiss, K.: IA*: An adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions. Computers & Graphics 35(3), 747–753 (2011)CrossRefGoogle Scholar
  2. 2.
    Cano, P., Torres, J.: Representation of polyhedral objects using SP-octrees. Journal of WSCG 10(1), 95–101 (2002)Google Scholar
  3. 3.
    Carlbom, I., Chakravarty, I., Vanderschel, D.: A hierarchical data structure for representing the spatial decomposition of 3-D objects. IEEE Computer Graphics and Applications 5(4), 24–31 (1985)CrossRefGoogle Scholar
  4. 4.
    De Carufel, J., Dillabaugh, C., Maheshwari, A.: Point location in well-shaped meshes using jump-and-walk. In: Canadian Conference on Computational Geometry (CCCG), pp. 147–152 (2011)Google Scholar
  5. 5.
    De Floriani, L., Facinoli, M., Magillo, P., Dimitri, D.: A hierarchical spatial index for triangulated surfaces. In: Proceedings of the Third International Conference on Computer Graphics Theory and Applications (GRAPP 2008), pp. 86–91 (2008)Google Scholar
  6. 6.
    De Floriani, L., Fellegara, R., Iuricich, F., Weiss, K.: A spatial approach to morphological feature extraction from irregularly sampled scalar fields. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on GeoStreaming, pp. 40–47. ACM (2012)Google Scholar
  7. 7.
    De Floriani, L., Fellegara, R., Magillo, P.: Spatial Indexing on Tetrahedral Meshes. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 506–509. ACM (2010)Google Scholar
  8. 8.
    De Floriani, L., Fellegara, R., Magillo, P., Weiss, K.: Tetrahedral trees: A family of hierarchical spatial indexes for tetrahedral meshes (in Preparation)Google Scholar
  9. 9.
    Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 106–114. ACM (2001)Google Scholar
  10. 10.
    Dillabaugh, C.: I/O efficient path traversal in well-shaped tetrahedral meshes (2010)Google Scholar
  11. 11.
    Gargantini, I.: An effective way to represent quadtrees. Communications of the ACM 25(12), 905–910 (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gurung, T., Rossignac, J.: SOT: A compact representation for tetrahedral meshes. In: Proceedings SIAM/ACM Geometric and Physical Modeling, SPM 2010, San Francisco, USA, pp. 79–88 (2009)Google Scholar
  13. 13.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 1. ACM (1984)Google Scholar
  14. 14.
    Hjaltason, G., Samet, H.: Speeding up construction of PMR quadtree-based spatial indexes. The VLDB Journal — The International Journal on Very Large Data Bases 11(2), 137 (2002)Google Scholar
  15. 15.
    Houston, B., Nielsen, M.B., Batty, C., Nilsson, O., Museth, K.: Hierarchical rle level set: A compact and versatile deformable surface representation. ACM Transactions on Graphics (TOG) 25(1), 151–175 (2006)CrossRefGoogle Scholar
  16. 16.
    Lindenbaum, M., Samet, H., Hjaltason, G.R.: A probabilistic analysis of trie-based sorting of large collections of line segments in spatial databases. SIAM Journal on Computing 35(1), 22–58 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mücke, E., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two-and three-dimensional delaunay triangulations. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, pp. 274–283. ACM (1996)Google Scholar
  18. 18.
    Navazo, I.: Extended octree representation of general solids with plane faces: model structure and algorithms. Computer & Graphics 13(1), 5–16 (1989)CrossRefGoogle Scholar
  19. 19.
    Nelson, R., Samet, H.: A population analysis for hierarchical data structures. In: Proc. ACM SIGMOD Conference, San Francisco, CA, USA, pp. 270–277 (1987)Google Scholar
  20. 20.
    Nielsen, M.B., Museth, K.: Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. Journal of Scientific Computing 26(3), 261–299 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Nielson, G.M.: Tools for triangulations and tetrahedralizations and constructing functions defined over them. In: Nielson, G.M., Hagen, H., Müller, H. (eds.) Scientific Visualization: Overviews, Methodologies and Techniques, vol. ch. 20, pp. 429–525. IEEE Computer Society, Silver Spring (1997)Google Scholar
  22. 22.
    Orenstein, J.: Multidimensional tries used for associative searching. INFO. PROC. LETT. 14(4), 150–157 (1982)CrossRefGoogle Scholar
  23. 23.
    Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer (2003)Google Scholar
  24. 24.
    Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics (TOG) 12(1), 56–102 (1993)zbMATHCrossRefGoogle Scholar
  25. 25.
    Papadomanolakis, S., Ailamaki, A., Lopez, J.C., Tu, T., O’Hallaron, D.R., Heber, G.: Efficient query processing on unstructured tetrahedral meshes. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Datsa, pp. 551–562. ACM (2006)Google Scholar
  26. 26.
    Ponchio, F., Hormann, K.: Interactive rendering of dynamic geometry. Visualization and Computer Graphics, IEEE Transactions on 14(4), 914–925 (2008)CrossRefGoogle Scholar
  27. 27.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  28. 28.
    Samet, H.: The Design and analysis of spatial data structure. Addison-Wesley, Reading (1990)Google Scholar
  29. 29.
    Samet, H.: Foundations of multidimensional and metric data structures. Morgan Kaufmann (2006)Google Scholar
  30. 30.
    Samet, H., Webber, R.: Storing a collection of polygons using quadtrees. ACM Transactions on Graphics (TOG) 4(3), 182–222 (1985)CrossRefGoogle Scholar
  31. 31.
    Weiss, K., Fellegara, R., De Floriani, L., Velloso, M.: The PR-star octree: A spatio-topological data structure for tetrahedral meshes. In: Proceedings ACM SIGSPATIAL GIS, GIS 2011. ACM (November 2011)Google Scholar
  32. 32.
    Weiss, K., Iuricich, F., Fellegara, R., Floriani, L.D.: A primal/dual representation for discrete morse complexes on tetrahedral meshes. In: Computer Graphics Forum (CGF) (to appear, 2013), also presented at 15th EuroVis Eurographics/IEEE Symposium on VisualizationGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science, Bioengineering, Robotics and System EngineeringUniversity of GenovaGenovaItaly

Personalised recommendations