Advertisement

A Latent Semantic Indexing-Based Approach to Determine Similar Clusters in Large-scale Schema Matching

  • Seham Moawed
  • Alsayed Algergawy
  • Amany Sarhan
  • Ali Eldosouky
  • Gunter Saake
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 241)

Abstract

Schema matching plays a central role in identifying the semantic correspondences across shared-data applications, such as data integration. Due to the increasing size and the widespread use of XML schemas and different kinds of ontologies, it becomes toughly challenging to cope with large-scale schema matching. Clustering-based matching is a great step towards more significant reduction of the search space and thus improved efficiency. However, methods used to identify similar clusters depend on literally matching terms. To improve this situation, in this paper, a new approach is proposed which uses Latent Semantic Indexing that allows retrieving the conceptual meaning between clusters. The experimental evaluations show encourage results towards building efficient large-scale matching approaches.

Keywords

Large-scale Schema Clustering-based matching Similar Clusters Latent semantic indexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Algergawy, A., Schallehn, E., Saake, G.: Improving XML schema matching using prufer sequences. DKE 68(8), 728–747 (2009)CrossRefGoogle Scholar
  3. 3.
    Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Review 41(2), 335–362 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping verification: the spicy way. In: EDBT 2008, France,, pp. 85–96 (2008)Google Scholar
  5. 5.
    Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by latent semantic analysis. Journal of American Society for Information Science 41, 391–407Google Scholar
  6. 6.
    Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information Systems 32(6), 857–885 (2007)CrossRefGoogle Scholar
  7. 7.
    Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partitioning of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 251–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. DKE 67, 140–160 (2008)CrossRefGoogle Scholar
  9. 9.
    Landauer, T.: Handbook of Latent Semantic Analysis (2007)Google Scholar
  10. 10.
    Peukert, E., Massmann, S., Konig, K.: Comparing similarity combination methods for schema matching. In: GI-Workshop, pp. 692–701 (2010)Google Scholar
  11. 11.
    Rahm, E.: Towards large-scale schema and ontology matching. In: Data-Centric Systems and Applications, vol. 5258, pp. 3–27. Springer (2011)Google Scholar
  12. 12.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Semantics 7(4), 344–356 (2009)CrossRefGoogle Scholar
  14. 14.
    Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 99–105. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Seham Moawed
    • 3
  • Alsayed Algergawy
    • 1
    • 2
  • Amany Sarhan
    • 2
  • Ali Eldosouky
    • 3
  • Gunter Saake
    • 1
  1. 1.Department of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of Computer EngineeringTanta UniversityTantaEgypt
  3. 3.Department of Computer EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations