Skip to main content

Enhanced Image Segmentation Using Quality Threshold Clustering for Surface Defect Categorisation in High Precision Automotive Castings

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 239))

Abstract

Foundry is an important industry that supplies key products to other important sectors of the society. In order to assure the quality of the final product, the castings are subject to strict safety controls. One of the most important test in these controls is surface quality inspection. In particular, our work focuses on three of the most typical surface defects in iron foundries: inclusions, cold laps and misruns. In order to automatise this process, we introduce the QT Clustering approach to increase the perfomance of a segmentation method. Finally, we categorise resulting areas using machine-learning algorithms. We show that with this addition our segmentation method increases its coverage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mital, A., Govindaraju, M., Subramani, B.: A comparison between manual and hybrid methods in parts inspection. Integrated Manufacturing Systems 9(6), 344–349 (1998)

    Article  Google Scholar 

  2. Watts, K.P.: The effect of visual search strategy and overlays on visual inspection of castings. Master’s thesis, Iowa State University (2011)

    Google Scholar 

  3. Pernkopf, F., O’Leary, P.: Image acquisition techniques for automatic visual inspection of metallic surfaces. NDT & E International 36(8), 609–617 (2003)

    Article  Google Scholar 

  4. vom Stein, D.: Automatic visual 3-d inspection of castings. Foundry Trade Journal 180(3641), 24–27 (2007)

    Google Scholar 

  5. Castleman, K.: 2nd edn. Prentice-Hall, Englewood Clliffs, New Jersey (1996)

    Google Scholar 

  6. Pastor-Lopez, I., Santos, I., Santamaria-Ibirika, A., Salazar, M., de-la Pena-Sordo, J., Bringas, P.: Machine-learning-based surface defect detection and categorisation in high-precision foundry. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1359–1364 (2012)

    Google Scholar 

  7. Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring expression data: identification and analysis of coexpressed genes. Genome Research 9(11), 1106–1115 (1999)

    Article  Google Scholar 

  8. Ugarte-Pedrero, X., Santos, I., Bringas, P., Gastesi, M., Esparza, J.: Semi-supervised learning for packed executable detection. In: Proceedings of the 5th International Conference on Network and System Security (NSS), pp. 342–346 (2011)

    Google Scholar 

  9. Gonzalez, R., Woods, R.: Digital image processing, vol. 16(716). Addison-Wesley, Reading (1992)

    Google Scholar 

  10. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  11. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  12. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16(3), 321–357 (2002)

    MATH  Google Scholar 

  13. Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief networks from databases. In: Proceedings of the 1991 Conference on Uncertainty in Artificial Intelligence (1991)

    Google Scholar 

  14. Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network classifiers. Machine Learning, 131–163 (1997)

    Google Scholar 

  15. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Networks 12(6), 783–789 (1999)

    Article  Google Scholar 

  16. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Proc. CVPR, vol. 1, p. 4 (2008)

    Google Scholar 

  17. Üstün, B., Melssen, W., Buydens, L.: Visualisation and interpretation of support vector regression models. Analytica Chimica Acta 595(1-2), 299–309 (2007)

    Article  Google Scholar 

  18. Cho, B., Yu, H., Lee, J., Chee, Y., Kim, I., Kim, S.: Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Transactions on Information Technology in Biomedicine 12(2), 247 (2008)

    Article  Google Scholar 

  19. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceedings of the 1995 New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)

    Google Scholar 

  20. Quinlan, J.: C4. 5 programs for machine learning. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  21. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  22. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. International Journal of Computer Applications in Technology 35(2), 183–193 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Pastor-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pastor-López, I., Santos, I., de-la-Peña-Sordo, J., García-Ferreira, I., Zabala, A.G., Bringas, P.G. (2014). Enhanced Image Segmentation Using Quality Threshold Clustering for Surface Defect Categorisation in High Precision Automotive Castings. In: Herrero, Á., et al. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-01854-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01854-6_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01853-9

  • Online ISBN: 978-3-319-01854-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics