Skip to main content

Dynamics of Serial Robotic Manipulators

  • Chapter
Fundamentals of Robotic Mechanical Systems

Part of the book series: Mechanical Engineering Series ((MES,volume 124))

  • 201k Accesses

Abstract

The main objectives of this chapter are (a) to devise an algorithm for the real-time computed-torque control and (b) to derive the system of second-order ordinary differential equations (ODE) governing the motion of an n-axis manipulator. We will focus on serial manipulators, the dynamics of a much broader class of robotic mechanical systems, namely, parallel manipulators and mobile robots, being the subject of Chap. 12. Moreover, we will study mechanical systems with rigid links and rigid joints and will put aside systems with flexible elements, which pertain to a more specialized realm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Exercise 9 for an extension of this relation to a system of n rigid bodies.

  2. 2.

    \(\boldsymbol{\iota }\) is the Greek letter iota and denotes a vector; according to our notation, its components are ι 1, ι 2, and ι 3.

  3. 3.

    The relations below are made apparent with the aid of Fig. 4.6.

  4. 4.

    Only rows involving floating-point operations are counted here.

References

  • Angeles, J., 1988, Rational Kinematics, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Angeles, J. and Lee, S., 1988, “The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement”, ASME J. Applied Mechanics 55, pp. 243–244.

    Article  MATH  Google Scholar 

  • Angeles, J. and Ma, O., 1988, “Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement”, The Int. J. Robotics Res. 7, no. 5, pp. 32–47.

    Article  Google Scholar 

  • Angeles, J., Ma, O., and Rojas, A.A., 1989, “An algorithm for the inverse dynamics of n-axis general manipulators using Kane’s formulation of dynamical equations”, Computers and Mathematics with Applications 17, no. 12, pp. 1545–1561.

    Article  MATH  Google Scholar 

  • Balafoutis, C.A. and Patel, R.V., 1991, Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  • Bryson, Jr., A.E. and Ho, Y-C., 1975, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corporation, Washington, DC.

    Google Scholar 

  • Craig, J.J., 1989, Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley Publishing Company, Reading, MA.

    MATH  Google Scholar 

  • Currie, I.G., 1993, Fundamental Mechanics of Fluids, 2nd Edition, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • Dahlquist, G. and Björck, Å., 1974, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Etter, D.M., 1997, Engineering Problem Solving with Matlab, Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Featherstone, R., 1983, “Position and velocity transformations between robot end-effector coordinates and joint angles”, The Int. J. Robotics Res. 2, no. 2, pp. 35–45.

    Article  Google Scholar 

  • Featherstone, R., 1987, Robot Dynamics Algorithms, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Gear, C.W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Hollerbach, J.M., 1980, “A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamic formulation complexity”, IEEE Trans. Systems, Man, and Cybernetics SMC-10, no. 11, pp. 730–736.

    Google Scholar 

  • Hollerbach, J.M. and Sahar, G., 1983, “Wrist-partitioned inverse kinematic accelerations and manipulator dynamics”, The Int. J. Robotics Res. 2, no. 4, pp. 61–76.

    Article  Google Scholar 

  • Kahaner, D., Moler, C., and Nash, S., 1989, Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Kahn, M. E. 1969. “The near-minimum time control of open-loop articulated kinematic chains”, AI Memo 177, Artificial Intelligence Laboratory, Stanford University, Stanford. Also see Kahn, M.E., and Roth, B., 1971, “The near-minimum-time control of open-loop articulated kinematic chains”, ASME J. Dyn. Systs., Meas., and Control, 91, pp. 164–172.

    Google Scholar 

  • Kane, T.R., 1961, “Dynamics of nonholonomic systems”, ASME J. Applied Mechanics 83, pp. 574–578.

    Article  MathSciNet  MATH  Google Scholar 

  • Kane, T.R. and Levinson, D.A., 1983, “The use of Kane’s dynamical equations in robotics”, The Int. J. Robotics Res. 2, no. 3, pp. 3–21.

    Article  Google Scholar 

  • Khalil, W., Kleinfinger, J.F., and Gautier, M., 1986, “Reducing the computational burden of the dynamical models of robots”, Proc. IEEE Int. Conf. on Robotics & Automation,, San Francisco, pp. 525–531.

    Google Scholar 

  • Li, C.-J., 1989, “A new Lagrangian formulation of dynamics of robot manipulators”, ASME J. Dyn. Systs., Meas., and Control, 111, pp. 559–567.

    Google Scholar 

  • Li, C.-J. and Sankar, 1992, “Fast inverse dynamics computation in real-time robot control”, Mechanism and Machine Theory 1992, no. 27, pp. 741–750.

    Google Scholar 

  • Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., 1980, “On-line computational scheme for mechanical manipulators”, ASME J. Dyn. Systs., Meas., and Control, 102, pp. 69–76.

    Google Scholar 

  • Paul, R.P., 1981, Robot Manipulators. Mathematics, Programming, and Control, The MIT Press, Cambridge. MA.

    Google Scholar 

  • Saha, S.K., 1997, “A decomposition of the manipulator inertia matrix”, IEEE Trans. Robotics & Automation 13, pp. 301–304.

    Article  Google Scholar 

  • Saha, S.K., 1999, “Analytical expression for the inverted inertia matrix of serial robots”, The Int. J. Robotics Res. 18, no. 1, pp. 116–124.

    Google Scholar 

  • Saha, S.K., 2008, Introduction to Robotics, The McGraw-Hill Companies, New Delhi.

    Google Scholar 

  • Shampine, L.F. and Gear, C.W., 1979, “A user’s view of solving stiff ordinary differential equations”, SIAM Review 21, no. 1, pp. 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Silver, W.M., 1982, “On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators”, The Int. J. Robotics Res. 1, no. 2, pp. 118–128.

    Article  Google Scholar 

  • Spong, M.W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, Inc., Hoboken, NJ.

    Google Scholar 

  • Uicker, Jr., J.J., 1965. On the Dynamic Analysis of Spatial Linkages Using 4 × 4 Matrices, Ph.D. thesis, Northwestern University, Evanston.

    Google Scholar 

  • Walker, M.W. and Orin, D.E., 1982, “Efficient dynamic computer simulation of robotic mechanisms”, ASME J. Dyn. Systs., Meas., and Control, 104, pp. 205–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angeles, J. (2014). Dynamics of Serial Robotic Manipulators. In: Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-01851-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01851-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01850-8

  • Online ISBN: 978-3-319-01851-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics