Skip to main content

Kinematics of Alternative Robotic Mechanical Systems

  • Chapter

Part of the book series: Mechanical Engineering Series ((MES,volume 124))

Abstract

The study of robotic mechanical systems has focused, so far, on serial manipulators. These are the most common systems of their kind, but nowadays by no means the majority. In recent years, other kinds of robotic mechanical systems have been developed, as outlined in Chap. 1. Under alternative robotic mechanical systems we understand here: (a) parallel robots; (b) multifingered hands; (c) walking machines; and (d) rolling robots. A class that is increasingly receiving attention, humanoids, portrays an architecture inspired from the human musculo-skeletal system. This class deserves a study on its own because of the host of control problems that it poses to the roboticist; its kinematics, however, can be studied with the tools developed in this chapter for the first three kinds of systems listed above. For this reason, a section on humanoids is not included here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since all vectors in the 15 coefficients of interest are coplanar, they are regarded as two-dimensional vectors in the display of the 15 coefficients.

References

  • Charentus, S. and Renaud, M., 1989, Calcul du modèle géometrique directe de la plate-forme de Stewart, LAAS Report # 89260, Laboratoire d’Automatique et d’Analyse de Systèmes, Toulouse.

    Google Scholar 

  • De Luca, A. and Oriolo, G., 1995, “Modelling and control of nonholonomic mechanical systems”, in Angeles, J. and Kecskeméthy, A. (editors), Kinematics and Dynamics of Multi-Body Systems, Springer-Verlag, New York, pp. 277–342.

    Chapter  Google Scholar 

  • Dietmaier, P., 1998, “The Stewart-Gough platform of general geometry can have 40 real postures”, Proc. Sixth International Workshop on Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 7–16.

    Google Scholar 

  • Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Gosselin, C.M., Sefrioui, J., and Richard, M.J., 1992, “Solutions polynomiales au problème de la cinématique directe des manipulateurs parallèles plans à trois degrés de liberté”, Mechanism and Machine Theory 27, no. 2, pp. 107–119.

    Article  Google Scholar 

  • Gosselin, C.M., Sefrioui, J., and Richard, M.J., 1994a, “On the direct kinematics of spherical three-degree-of-freedom parallel manipulators with a coplanar platform”, ASME J. Mechanical Design 116, pp. 587–593.

    Article  Google Scholar 

  • Gosselin, C.M., Sefrioui, J., and Richard, M.J., 1994b, “On the direct kinematics of spherical three-degree-of-freedom parallel manipulators of general architecture”, ASME J. Mechanical Design 116, pp. 594–598.

    Article  Google Scholar 

  • Gosselin, C.M., Perreault, L., and Vaillancourt, C., 1995, “Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulators”, J. Robotic Systems 12, no. 12, pp. 857–869.

    Article  MATH  Google Scholar 

  • Gough, V.M., 1956–1957, “Communications”, Proc. Automobile Division of The Institution of Mechanical Engineers, pp. 166–168. See also “Discussion in London”, Proc. Automobile Division of The Institution of Mechanical Engineers, pp. 392–394.

    Google Scholar 

  • Hillier, F.S. and Lieberman, G.J., 1995, Introduction to Mathematical Programming, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Husty, M. L., 1996, “An algorithm for solving the direct kinematics of general Stewart-Gough platforms”, Mechanism and Machine Theory 31, no. 4, pp. 365–380.

    Article  Google Scholar 

  • Lazard, D. and Merlet, J.-P., 1994, “The (true) Stewart platform has 12 configurations”, Proc. IEEE Int. Conf. on Robotics & Automation, San Diego, pp. 2160–2165.

    Google Scholar 

  • Lee, H.Y. and Roth, B., 1993, “A closed-form solution of the forward displacement analysis of a class of in-parallel mechanisms”, Proc. IEEE Int. Conf. on Robotics & Automation, Atlanta, pp. 720–731.

    Google Scholar 

  • Menitto, G. and Buehler, M., 1996, “CARL: A compliant articulated robotic leg for dynamic locomotion”, Robotics and Autonomous Systems 18, pp. 337–344.

    Article  Google Scholar 

  • Merlet, J.-P., 1989, “Singular Configurations of Parallel Manipulators and Grassmann Geometry”, The Int. J. Robotics Res. 8, no. 5, pp. 45–56.

    Article  Google Scholar 

  • Merlet, J.-P., 2006, Parallel Robots, Second Edition, Springer, Dordrecht.

    MATH  Google Scholar 

  • Nanua, P., Waldron, K.J., and Murthy, V., 1990, “Direct kinematic solution of a Stewart platform”, IEEE Trans. Robotics & Automation 6, pp. 438–444.

    Article  Google Scholar 

  • Ostrovskaya, S. and Angeles, J., 1998, “Nonholonomic systems revisited within the framework of analytical mechanics”, Applied Mechanics Reviews, vol. 51, No. 7, pp. 415–433.

    Article  Google Scholar 

  • Raghavan, M., 1993, “The Stewart platform of general geometry has 40 configurations”, ASME J. Mechanical Design 115, pp. 277–282.

    Article  Google Scholar 

  • Reynaerts, D., 1995, Control Methods and Actuation Technology for Whole-Hand Dextrous Manipulation, doctoral dissertation, Fakulteit der Torgepaste Wetenschappen, Katholieke Universiteit Leuven, Leuven.

    Google Scholar 

  • Stewart, D., 1965, “A platform with 6 degrees of freedom”, Proc.  Institution of Mechanical Engineers 180, part 1, no. 15, pp. 371–386.

    Google Scholar 

  • Teichmann, M., 1995, Grasping and Fixturing: A Geometric Study and Implementation, Ph.D. thesis, Department of Computer Science, New York University, New York.

    Google Scholar 

  • Van Brussel, H., Santoso, B., and Reynaerts, D., 1989, “Design and control of a multi-fingered robot hand provided with tactile feedback”, Proc.  NASA Conf. Space Telerobotics, Pasadena, Jan.31–Feb.2, vol. III, pp. 89–101.

    Google Scholar 

  • Wampler, C., 1996, “Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates”, Mechanism and Machine Theory 31, no. 3, pp. 331–337.

    Article  Google Scholar 

  • West, M. and Asada, H., 1995, “Design and control of ball wheel omnidirectional vehicles”, Proc. IEEE Int. Conf. on Robotics & Automation, Nagoya, pp. 1931–1938.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angeles, J. (2014). Kinematics of Alternative Robotic Mechanical Systems. In: Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-01851-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01851-5_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01850-8

  • Online ISBN: 978-3-319-01851-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics