Non-minimal Higgs Inflation

Part of the Springer Theses book series (Springer Theses)


In most cosmological models, the inflationary mechanism is described in terms of a scalar field – the inflaton. However, despite its obvious success in fitting observational data and in resolving basic cosmological problems, some fundamental questions still remain unresolved. One of these questions is connected with the physical reality of the inflaton. The origin and the nature of the inflaton field remain unexplained so far. The Standard Model of Particle Physics, whose predictions are experimentally tested to an outstanding level of precision, does also rely on the crucial assumption about the existence of a scalar field. In this context, the scalar field is called Higgs boson and serves to explain the origin of the elementary particle masses, while maintaining gauge invariance. By noticing the formal similarities between the inflaton and the Higgs boson, it is natural to wonder whether there could be a deeper and more fundamental connection between these two scalar particles. Ultimately, this leads to the question whether they could be just two manifestations of one and the same particle–the Higgs-inflaton.


Higgs Boson Higgs Mass Quantum Correction Einstein Frame Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adler, S.L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Alvarez-Gaume, L., Gomez, C., Jimenez, R.: A minimal inflation scenario. J. Cosmol. Astropart. Phys. 03, 027 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Amsler, C. et al. (Particle Data Group): Review of particle physics. Phys. Lett. B 667, 1 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Barbon, J.L.F., Espinosa, J.R.: On the naturalness of Higgs inflation. Phys. Rev. D 79, 081302 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Barbour, J., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295 (1982)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Quantum scale of inflation and particle physics of the early universe. Phys. Lett. B 332, 270 (1994)Google Scholar
  7. 7.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Effective equations of motion and initial conditions for inflation in quantum cosmology. Nucl. Phys. B 532, 339 (1998)Google Scholar
  8. 8.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. Phys. Rev. D 48, 3677 (1993)Google Scholar
  9. 9.
    Barvinsky, A.O., Kamenshchik, A.Yu., Kiefer, C., Starobinsky, A.A., Steinwachs, C.: Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropart. Phys. 12, 003 (2009)Google Scholar
  10. 10.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Higgs Boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C. 72, 2219 (2012)Google Scholar
  11. 11.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Tunneling cosmological state revisited: origin of inflation with a nonminimally coupled standard model Higgs inflaton. Phys. Rev. D 81, 043530 (2010)Google Scholar
  12. 12.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Inflation scenario via the Standard model Higgs Boson and LHC. J. Cosmol. Astropart. Phys. 11, 021 (2008)Google Scholar
  13. 13.
    Barvinsky, A.O., Nesterov, D.V.: Effective equations in quantum cosmology. Nucl. Phys. B 608, 333 (2001)MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Bezrukov, F., Magnin, A., Shaposhnikov, M., Sibiryakov, S.: Higgs inflation: consistency and generalisations. J. High Energy Phys. 01, 016 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Bezrukov, F., Shaposhnikov, M.: Standard model Higgs boson mass from inflation: two loop analysis. J. High Energy Phys. 07, 089 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)Google Scholar
  19. 19.
    Blas, D., Shaposhnikov, M., Zenhausern, D.: Scale-invariant alternatives to general relativity. Phys. Rev. D 84, 044001 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Burgess, C.P., Lee, H.M., Trott, M.: Power-counting and the validity of the classical approximation during inflation. J. High Energy Phys. 09, 103 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Burgess, C.P., Lee, H.M., Trott, M.: On Higgs inflation and naturalness. J. High Energy Phys. 07, 007 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer (2010)Google Scholar
  24. 24.
    CERN Press Release (2011). ATLAS and CMS experiments present Higgs search status. URL (cited on January 30, 2012):
  25. 25.
    Clark, T.E., Liu, B., Love, S.T., ter Veldhuis, T.: Standard model Higgs boson-inflaton and dark matter. Phys. Rev. D 80, 075019 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Codello, A., Percacci, R., Rahmede, C.: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. (NY) 324, 414 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Coleman, S.R., Weinberg, E.J.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Dicke, R.H.: Mach’s principle and Invariance under transformation of units. Phys. Rev. 125, 2163 (1962)MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Dodelson, S.: Coherent phase argument for inflation. AIP Conf. Proc. 689, 184 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Einhorn, M.B., Jones, D.R.T.: Inflation with non-minimal gravitational couplings in supergravity. J. High Energy Phys. 03, 026 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Espinosa, J.R., Giudice, G.F., Riotto, A.: Cosmological implications of the Higgs mass measurement. J. Cosmol. Astropart. Phys. 05, 002 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Fakir, R., Unruh, W.G.: Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 41, 1783 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    Ferrara, S., Kallosh, R., Linde, A., Marrani, A., Van Proeyen, A.: Jordan frame supergravity and inflation in the NMSSM. Phys. Rev. D 82, 045003 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Ferrara, S., Kallosh, R., Linde, A., Marrani, A., Van Proeyen, A.: Superconformal symmetry, NMSSM, and inflation. Phys. Rev. D 83, 025008 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Futamase, T., Maeda, K.: Chaotic inflationary scenario of the Universe with a nonminimally coupled “inflaton” field. Phys. Rev. D 39, 399 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    Garcia-Bellido, J., Rubio, J., Shaposhnikov, M. and Zenhausern, D. Higgs-dilaton cosmology: from the early to the late Universe. Phys. Rev. D 84, 123504 (2011)Google Scholar
  38. 38.
    Germani, C., Kehagias, A.: New model of inflation with nonminimal derivative coupling of standard model Higgs Boson to gravity. Phys. Rev. Lett. 105, 011302 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)ADSCrossRefGoogle Scholar
  40. 40.
    Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Hawking, S.W.: Particle creation by Black Holes. Commun. Math. Phys. 43, 199 (1975)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970)MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Hertzberg, M.P.: On inflation with non-minimal coupling. J. High Energy Phys. 11, 023 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Hinshaw, G., et al.: Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. Ser. 180, 225 (2009)Google Scholar
  46. 46.
    Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Kaloper, N., Sorbo, L.: A natural framework for chaotic inflation. Phys. Rev. Lett. 102, 121301 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Kamada, K., Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Higgs G inflation. Phys. Rev. D 83, 083515 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Kazakov, D.I.: A generalization of the renormalization-group equations for quantum-field theories of arbitrary form. Theor. Math. Phys. 75, 440 (1988)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Kelly, P.F., Kobes, R., Kunstatter, G.: Parametrization invariance and the resolution of the unitary gauge puzzle. Phys. Rev. D 50, 7592 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, Oxford (2007)CrossRefzbMATHGoogle Scholar
  52. 52.
    Kleinert, H., Schulte-Frohlinde, V.: Critical properties of \(\phi ^{4}\)-theories. World Scientific, River Edge (2001)Google Scholar
  53. 53.
    Komatsu, E., et al.: Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009)Google Scholar
  54. 54.
    Lauscher, O., Reuter, M.: Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 65, 025013 (2002)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Lerner, R.N., McDonald, J.: Gauge singlet scalar as inflaton and thermal relic dark matter. Phys. Rev. D 80, 123507 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Lerner, R.N., McDonald, J.: Higgs inflation and naturalness. J. Cosmol. Astropart. Phys. 04, 015 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343 (2000)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Linde, A., Noorbala, M., Westphal, A.: Observational consequences of chaotic inflation with nonminimal coupling to gravity. J. Cosmol. Astropart. Phys. 03, 013 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Linde, A.D.: Quantum creation of the inflationary universe. Lett. Nuovo Cimento 39, 401 (1984)ADSCrossRefGoogle Scholar
  60. 60.
    Longhitano, A.C.: Heavy Higgs bosons in the Weinberg-Salam model. Phys. Rev. D 22, 1166 (1980)ADSCrossRefGoogle Scholar
  61. 61.
    Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and a nonsingular universe. JETP Lett. 33, 532 (1981). (In Russian)Google Scholar
  62. 62.
    Okada, N., Rehman, M. U. and Shafi, Q.: Running standard model inflation and type I seesaw, p. 13. (2009). Accessed 19 Dec 2011
  63. 63.
    Okada, N., Shafi, Q.: WIMP dark matter inflation with observable gravity waves. Phys. Rev. D 84, 043533 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Pasechnik, R.S., Shirkov, D.V., Teryaev, O.V.: Bjorken sum rule and perturbative QCD frontier on the move. Phys. Rev. D 78, 071902 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 065016 (2002)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Reuter, M., Wetterich, C.: Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    Rubakov, V.A.: Particle creation in a tunneling universe. JETP Lett. 39, 107 (1984)ADSGoogle Scholar
  68. 68.
    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968)ADSGoogle Scholar
  69. 69.
    Salopek, D.S., Bond, J.R., Bardeen, J.M.: Designing density fluctuation spectra in inflation. Phys. Rev. D 40, 1753 (1989)ADSCrossRefGoogle Scholar
  70. 70.
    Schucker, T.: Higgs-mass predictions, p. 31. (2007). Accessed 30 Jan 2012)
  71. 71.
    Shaposhnikov, M., Wetterich, C.: Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    Shaposhnikov, M., Zenhausern, D.: Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 671, 162 (2009)MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Shaposhnikov, M., Zenhausern, D.: Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671, 187 (2009)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    Sher, M.: Electroweak Higgs potentials and vacuum stability. Phys. Rep. 179, 273 (1989)ADSCrossRefGoogle Scholar
  75. 75.
    Shirkov, D.V.: Perturbative analysis of general renorm-group solutions in a massive case. Nucl. Phys. B 371, 467 (1992)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Shirkov, D.V., Mikhailov, S.V.: Mass dependent \(\alpha _{s}\) evolution and the light gluino existence. Z. Phys. C 63, 463 (1994)ADSCrossRefGoogle Scholar
  77. 77.
    Sirlin, A., Zucchini, R.: Dependence of the Higgs coupling \(\bar{h}_{\overline{\rm{MS}}}(M)\) on \(m(\rm{H})\) and the possible onset of new physics. Nucl. Phys. B 266, 389 (1986)ADSCrossRefGoogle Scholar
  78. 78.
    Spokoiny, B.L.: Inflation and generation of perturbations in broken-symmetric theory of gravity. Phys. Lett. B 147, 39 (1984)ADSCrossRefGoogle Scholar
  79. 79.
    Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  80. 80.
    Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)ADSCrossRefGoogle Scholar
  81. 81.
    Starobinsky, A.A.: The perturbation spectrum evolving from a nonsingular initially de Sitter cosmology and the microwave background anisotropy. Sov. Astron. Lett. 9, 302 (1983)ADSGoogle Scholar
  82. 82.
    Steinwachs, C.F., Kamenshchik, A.Yu.: One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011)Google Scholar
  83. 83.
    Sugiyama, N., Futamase, T.: Non-Gaussianity generated in the inflationary scenario with nonminimally coupled inflaton field. Phys. Rev. D 81, 023504 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    Tarrach, R.: The pole mass in perturbative QCD. Nucl. Phys. B 183, 384 (1981)ADSCrossRefGoogle Scholar
  85. 85.
    Vilenkin, A.: Quantum creation of universes. Phys. Rev. D 30, 509 (1984)MathSciNetADSCrossRefGoogle Scholar
  86. 86.
    Watanabe, Y.: Rate of gravitational inflaton decay via gauge trace anomaly. Phys. Rev. D 83, 043511 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking S. W., Israel W. (eds.) General relativity: an Einstein centenary survey, pp. 790–831 (1979). (Chapter 16)Google Scholar
  88. 88.
    Zee, A.: Broken-symmetric theory of gravity. Phys. Rev. Lett. 42, 417 (1979)ADSCrossRefGoogle Scholar
  89. 89.
    Zeldovich, Y.B., Starobinsky, A.A.: Quantum creation of a universe in a nontrivial topology. Sov. Astron. Lett. 10, 135 (1984)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations