Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 641 Accesses

Abstract

In most cosmological models, the inflationary mechanism is described in terms of a scalar field – the inflaton. However, despite its obvious success in fitting observational data and in resolving basic cosmological problems, some fundamental questions still remain unresolved. One of these questions is connected with the physical reality of the inflaton. The origin and the nature of the inflaton field remain unexplained so far. The Standard Model of Particle Physics, whose predictions are experimentally tested to an outstanding level of precision, does also rely on the crucial assumption about the existence of a scalar field. In this context, the scalar field is called Higgs boson and serves to explain the origin of the elementary particle masses, while maintaining gauge invariance. By noticing the formal similarities between the inflaton and the Higgs boson, it is natural to wonder whether there could be a deeper and more fundamental connection between these two scalar particles. Ultimately, this leads to the question whether they could be just two manifestations of one and the same particle–the Higgs-inflaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although it should be mentioned that beside the striking evidence from the CMB, the explainable large scale structure of matter from tiny primordial quantum fluctuations and the coherent phase argument [30] all support the hypothesis of inflation. Moreover, it is expected that further experiments will measure primordial gravitational waves which ultimately are a measure of the energy scale of inflation. In consideration of all this evidence it seems to be very difficult to find a different mechanism which could explain all these features and does not contradict any observation.

  2. 2.

    Ockham’s razor does not apply if two competing theories make different testable predictions.

  3. 3.

    This is suggested e.g. by the singularity theorems [43], the black hole radiation [41] and the general intention for unification.

  4. 4.

    Even in the restricted scenario of scalar-tensor theories this freedom could correspond to different choices of the non-minimal coupling term parametrized by a general function \(U(\varphi )\).

  5. 5.

    For the relativistic idea, it is not mandatory to rely on a differentiable background manifold and the formalism of General Relativity. In fact, this is rather counter intuitive to a truly background-independent viewpoint of a purely relational setup. In General Relativity we indeed do have a background manifold. However “background independence” is established “afterwards” by considering only covariant equations.

  6. 6.

    The scale which is distinguished by the approximate intersection point of the RG trajectories of the Standard Model gauge couplings.

  7. 7.

    The notion of a cut-off depends on the type of perturbation theory used. Typically, it is determined for the case when all dimensional quantities—fields and their derivatives – are considered on equal footing and treated perturbatively. However, as we will see in Sect. 6.6 the effective Planck mass requires a field dependent cut-off, which allows an extension of the model to scales above \(M_\mathrm{{P}}/\xi \).

  8. 8.

    This is analogous to the approach of [15] where the model was approximated by matching the usual low-energy Standard Model phase with the chiral phase of the Standard Model at the inflation energy scale. This picture, however, takes place in the Einstein frame of the theory and is aggravated by the problem of transition between two different parametrizations of one quantum theory—the Cartesian coordinates in the space of the Higgs multiplet in the low-energy phase versus spherical coordinates in the chiral phase of the Standard Model. This transition is physically non-trivial.

  9. 9.

    At the level of the Schwinger–DeWitt algorithm this corresponds to focusing only on the Higgs-Higgs block \(P_{a}^{b}\) of the potential matrix (4.88). On the level of the general results (5.195)–(5.110), this means neglecting terms associated with inverse powers of \(M_\mathrm{{P}}\).

  10. 10.

    This is certainly justified for an inflationary scenario with \(R\sim H^2\sim V/6U\sim \text {const.}\) and \(\varphi \sim \text {const.}\), cf. (6.36). At the level of the Schwinger–DeWitt formalism, the vanishing of gradients \(\nabla \varphi =0\) leads to \(\hat{\mathcal{R}}_{\mu \nu }=0\) and therefore to a simplified expression for the \(\hat{a}_{2}\) coefficient (4.112).

  11. 11.

    The results for (6.21) in the Appendix of [9] and (5.109) of [82] differ by a global sign which is associated with \(R\) due to the use of a different sign convention.

  12. 12.

    The name rolling force stems from the fact that the Klein–Gordon equation (re-introducing the second derivative term \(\ddot{\varphi }\)) corresponds to the equation for a damped harmonic oscillator with a damping term \(\propto H\dot{\varphi }\) and a driving force \(\propto F\). The inflationary picture suggests that this force drives the field to roll down the potential \(V\).

  13. 13.

    In [7] only a single scalar field has been considered. Therefore, the Goldstone contributions to \({\mathbf {A}}\) and \({\mathbf {C}}\) did not appear.

  14. 14.

    The whole formalism presented here has been derived in [7] for a single scalar field. Thus, there are neither Goldstone boson contributions to \(V_\mathrm{{eff}}\) (no terms \(\propto \,6\,\lambda \) in (6.14)) nor to \(U_\mathrm{{eff}}\) (\({\mathbf {C}}\ll 1\) and thus \({\mathbf {A}}={\mathbf {A_{I}}}\)).

  15. 15.

    In [12], the contributions from Goldstone bosons have not been taken into account and all parameters have been calculated at the electroweak scale \(\nu =246\)  GeV only. However, in view of (6.9) and \(\lambda (0)\ll 1\) this does not make not make a difference at this scale.

  16. 16.

    At a Landau pole, the running coupling constants \(g_{i}(t)\) become infinite for finite values of the RG parameter \(t\).

  17. 17.

    In the inflationary analysis this choice might seem unnatural. A more natural choice would be \(\mu =M_\mathrm{{P}}/\sqrt{\xi }\) in order to keep the one-loop logarithms small.

  18. 18.

    The analytical algorithm of transition between different scales for \(g_{s}^2\) was presented in [64, 75, 76].

  19. 19.

    No modification of the spectral index due to \(Z\) occurs in the one-loop RG running because the difference \(n_\mathrm{{s}}^\varphi -n_\mathrm{{s}}^\phi =2\gamma dt/dN=(\gamma \,{\mathbf {A_I}}/48\pi ^2)e^x/(e^x-1)\) belongs to the two-loop order.

  20. 20.

    It is clear that \(|\xi _{0}|\) should roughly be of order \(10^4\) to satisfy (6.118), but for the algorithm we describe here it does not matter in principle, albeit choosing a very different \(\xi _{0}\) will increase the number of iterations as we will see in a moment.

  21. 21.

    An over-Planckian scale of \(\varphi \) does not signify a breakdown of the semi-classical expansion, because the energy density \(\sim 10^{-10} M_P^4\) stays far below the Planckian value.

  22. 22.

    The existence of this vacuum can perhaps be probed by wavelengths longer than that of a pivotal \(N\simeq 60\), but this requires a deeper analysis.

  23. 23.

    We have shown in Sect. 5.3.1 that such a transition between Jordan frame and Einstein frame is always possible for a \(O(N)\) symmetric multiplet of scalar fields non-minimally coupled to gravity, in contrast to the claim of [46].

  24. 24.

    Like the logarithmic term of (6.47) which dominates over the nearly flat classical part of the inflaton potential and qualitatively modifies tree-level predictions of the theory [9].

  25. 25.

    It is clear that even in the absence of quantum corrections the scale invariance in the Jordan frame is broken by the mass scale \(M_\mathrm{{P}}\), when inflation comes to an end (remember that this scale was determined by the condition \(\hat{\varepsilon }=3/4\)). This is of course necessary since an exact scale invariance would imply a strictly constant (for all times) potential in the Einstein frame and would therefore not permit a phase of reheating.

  26. 26.

    It is well known that despite the perturbative range of coupling constants, the two-loop RG improvement essentially lowers the electroweak instability threshold compared to the one-loop RG running [32].

  27. 27.

    In fact, this is a problem of consistent transition from \(\langle O[V(\varphi )]\rangle \) to \(O[V^\mathrm{eff}(\langle \varphi \rangle )]\) which brings the problem of gauge dependence in the formalism of the mean field \(\langle \varphi \rangle \) and its effective action.

References

  1. Adler, S.L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729 (1982)

    Article  ADS  Google Scholar 

  2. Alvarez-Gaume, L., Gomez, C., Jimenez, R.: A minimal inflation scenario. J. Cosmol. Astropart. Phys. 03, 027 (2011)

    Article  ADS  Google Scholar 

  3. Amsler, C. et al. (Particle Data Group): Review of particle physics. Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  4. Barbon, J.L.F., Espinosa, J.R.: On the naturalness of Higgs inflation. Phys. Rev. D 79, 081302 (2009)

    Article  ADS  Google Scholar 

  5. Barbour, J., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Barvinsky, A.O., Kamenshchik, A.Yu.: Quantum scale of inflation and particle physics of the early universe. Phys. Lett. B 332, 270 (1994)

    Google Scholar 

  7. Barvinsky, A.O., Kamenshchik, A.Yu.: Effective equations of motion and initial conditions for inflation in quantum cosmology. Nucl. Phys. B 532, 339 (1998)

    Google Scholar 

  8. Barvinsky, A.O., Kamenshchik, A.Yu.: Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. Phys. Rev. D 48, 3677 (1993)

    Google Scholar 

  9. Barvinsky, A.O., Kamenshchik, A.Yu., Kiefer, C., Starobinsky, A.A., Steinwachs, C.: Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropart. Phys. 12, 003 (2009)

    Google Scholar 

  10. Barvinsky, A.O., Kamenshchik, A.Yu.: Higgs Boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C. 72, 2219 (2012)

    Google Scholar 

  11. Barvinsky, A.O., Kamenshchik, A.Yu.: Tunneling cosmological state revisited: origin of inflation with a nonminimally coupled standard model Higgs inflaton. Phys. Rev. D 81, 043530 (2010)

    Google Scholar 

  12. Barvinsky, A.O., Kamenshchik, A.Yu.: Inflation scenario via the Standard model Higgs Boson and LHC. J. Cosmol. Astropart. Phys. 11, 021 (2008)

    Google Scholar 

  13. Barvinsky, A.O., Nesterov, D.V.: Effective equations in quantum cosmology. Nucl. Phys. B 608, 333 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Bezrukov, F., Magnin, A., Shaposhnikov, M., Sibiryakov, S.: Higgs inflation: consistency and generalisations. J. High Energy Phys. 01, 016 (2011)

    Article  ADS  Google Scholar 

  15. Bezrukov, F., Shaposhnikov, M.: Standard model Higgs boson mass from inflation: two loop analysis. J. High Energy Phys. 07, 089 (2009)

    Article  ADS  Google Scholar 

  16. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009)

    Article  ADS  Google Scholar 

  17. Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2007)

    Article  ADS  Google Scholar 

  18. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  19. Blas, D., Shaposhnikov, M., Zenhausern, D.: Scale-invariant alternatives to general relativity. Phys. Rev. D 84, 044001 (2011)

    Article  ADS  Google Scholar 

  20. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Burgess, C.P., Lee, H.M., Trott, M.: Power-counting and the validity of the classical approximation during inflation. J. High Energy Phys. 09, 103 (2009)

    Article  ADS  Google Scholar 

  22. Burgess, C.P., Lee, H.M., Trott, M.: On Higgs inflation and naturalness. J. High Energy Phys. 07, 007 (2010)

    Article  ADS  Google Scholar 

  23. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer (2010)

    Google Scholar 

  24. CERN Press Release (2011). ATLAS and CMS experiments present Higgs search status. URL (cited on January 30, 2012): http://press.web.cern.ch/press/PressReleases/Releases2011/PR25.11E.html

  25. Clark, T.E., Liu, B., Love, S.T., ter Veldhuis, T.: Standard model Higgs boson-inflaton and dark matter. Phys. Rev. D 80, 075019 (2009)

    Article  ADS  Google Scholar 

  26. Codello, A., Percacci, R., Rahmede, C.: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. (NY) 324, 414 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Coleman, S.R., Weinberg, E.J.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  28. De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2009)

    Article  ADS  Google Scholar 

  29. Dicke, R.H.: Mach’s principle and Invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Dodelson, S.: Coherent phase argument for inflation. AIP Conf. Proc. 689, 184 (2003)

    Article  ADS  Google Scholar 

  31. Einhorn, M.B., Jones, D.R.T.: Inflation with non-minimal gravitational couplings in supergravity. J. High Energy Phys. 03, 026 (2010)

    Article  ADS  Google Scholar 

  32. Espinosa, J.R., Giudice, G.F., Riotto, A.: Cosmological implications of the Higgs mass measurement. J. Cosmol. Astropart. Phys. 05, 002 (2008)

    Article  ADS  Google Scholar 

  33. Fakir, R., Unruh, W.G.: Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 41, 1783 (1990)

    Article  ADS  Google Scholar 

  34. Ferrara, S., Kallosh, R., Linde, A., Marrani, A., Van Proeyen, A.: Jordan frame supergravity and inflation in the NMSSM. Phys. Rev. D 82, 045003 (2010)

    Article  ADS  Google Scholar 

  35. Ferrara, S., Kallosh, R., Linde, A., Marrani, A., Van Proeyen, A.: Superconformal symmetry, NMSSM, and inflation. Phys. Rev. D 83, 025008 (2011)

    Article  ADS  Google Scholar 

  36. Futamase, T., Maeda, K.: Chaotic inflationary scenario of the Universe with a nonminimally coupled “inflaton” field. Phys. Rev. D 39, 399 (1989)

    Article  ADS  Google Scholar 

  37. Garcia-Bellido, J., Rubio, J., Shaposhnikov, M. and Zenhausern, D. Higgs-dilaton cosmology: from the early to the late Universe. Phys. Rev. D 84, 123504 (2011)

    Google Scholar 

  38. Germani, C., Kehagias, A.: New model of inflation with nonminimal derivative coupling of standard model Higgs Boson to gravity. Phys. Rev. Lett. 105, 011302 (2010)

    Article  ADS  Google Scholar 

  39. Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  40. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  41. Hawking, S.W.: Particle creation by Black Holes. Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  42. Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  43. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Hertzberg, M.P.: On inflation with non-minimal coupling. J. High Energy Phys. 11, 023 (2010)

    Article  ADS  Google Scholar 

  45. Hinshaw, G., et al.: Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. Ser. 180, 225 (2009)

    Google Scholar 

  46. Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)

    Article  ADS  Google Scholar 

  47. Kaloper, N., Sorbo, L.: A natural framework for chaotic inflation. Phys. Rev. Lett. 102, 121301 (2009)

    Article  ADS  Google Scholar 

  48. Kamada, K., Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Higgs G inflation. Phys. Rev. D 83, 083515 (2011)

    Article  ADS  Google Scholar 

  49. Kazakov, D.I.: A generalization of the renormalization-group equations for quantum-field theories of arbitrary form. Theor. Math. Phys. 75, 440 (1988)

    Article  MathSciNet  Google Scholar 

  50. Kelly, P.F., Kobes, R., Kunstatter, G.: Parametrization invariance and the resolution of the unitary gauge puzzle. Phys. Rev. D 50, 7592 (1994)

    Article  ADS  Google Scholar 

  51. Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  52. Kleinert, H., Schulte-Frohlinde, V.: Critical properties of \(\phi ^{4}\)-theories. World Scientific, River Edge (2001)

    Google Scholar 

  53. Komatsu, E., et al.: Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Google Scholar 

  54. Lauscher, O., Reuter, M.: Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 65, 025013 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  55. Lerner, R.N., McDonald, J.: Gauge singlet scalar as inflaton and thermal relic dark matter. Phys. Rev. D 80, 123507 (2009)

    Article  ADS  Google Scholar 

  56. Lerner, R.N., McDonald, J.: Higgs inflation and naturalness. J. Cosmol. Astropart. Phys. 04, 015 (2010)

    Article  ADS  Google Scholar 

  57. Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  58. Linde, A., Noorbala, M., Westphal, A.: Observational consequences of chaotic inflation with nonminimal coupling to gravity. J. Cosmol. Astropart. Phys. 03, 013 (2011)

    Article  ADS  Google Scholar 

  59. Linde, A.D.: Quantum creation of the inflationary universe. Lett. Nuovo Cimento 39, 401 (1984)

    Article  ADS  Google Scholar 

  60. Longhitano, A.C.: Heavy Higgs bosons in the Weinberg-Salam model. Phys. Rev. D 22, 1166 (1980)

    Article  ADS  Google Scholar 

  61. Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and a nonsingular universe. JETP Lett. 33, 532 (1981). (In Russian)

    Google Scholar 

  62. Okada, N., Rehman, M. U. and Shafi, Q.: Running standard model inflation and type I seesaw, p. 13. http://arxiv.org/abs/0911.5073 (2009). Accessed 19 Dec 2011

  63. Okada, N., Shafi, Q.: WIMP dark matter inflation with observable gravity waves. Phys. Rev. D 84, 043533 (2011)

    Article  ADS  Google Scholar 

  64. Pasechnik, R.S., Shirkov, D.V., Teryaev, O.V.: Bjorken sum rule and perturbative QCD frontier on the move. Phys. Rev. D 78, 071902 (2008)

    Article  ADS  Google Scholar 

  65. Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 065016 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  66. Reuter, M., Wetterich, C.: Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181 (1994)

    Article  ADS  Google Scholar 

  67. Rubakov, V.A.: Particle creation in a tunneling universe. JETP Lett. 39, 107 (1984)

    ADS  Google Scholar 

  68. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968)

    ADS  Google Scholar 

  69. Salopek, D.S., Bond, J.R., Bardeen, J.M.: Designing density fluctuation spectra in inflation. Phys. Rev. D 40, 1753 (1989)

    Article  ADS  Google Scholar 

  70. Schucker, T.: Higgs-mass predictions, p. 31. http://arxiv.org/pdf/0708.3344v8.pdf (2007). Accessed 30 Jan 2012)

  71. Shaposhnikov, M., Wetterich, C.: Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196 (2010)

    Article  ADS  Google Scholar 

  72. Shaposhnikov, M., Zenhausern, D.: Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 671, 162 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  73. Shaposhnikov, M., Zenhausern, D.: Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671, 187 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  74. Sher, M.: Electroweak Higgs potentials and vacuum stability. Phys. Rep. 179, 273 (1989)

    Article  ADS  Google Scholar 

  75. Shirkov, D.V.: Perturbative analysis of general renorm-group solutions in a massive case. Nucl. Phys. B 371, 467 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  76. Shirkov, D.V., Mikhailov, S.V.: Mass dependent \(\alpha _{s}\) evolution and the light gluino existence. Z. Phys. C 63, 463 (1994)

    Article  ADS  Google Scholar 

  77. Sirlin, A., Zucchini, R.: Dependence of the Higgs coupling \(\bar{h}_{\overline{\rm{MS}}}(M)\) on \(m(\rm{H})\) and the possible onset of new physics. Nucl. Phys. B 266, 389 (1986)

    Article  ADS  Google Scholar 

  78. Spokoiny, B.L.: Inflation and generation of perturbations in broken-symmetric theory of gravity. Phys. Lett. B 147, 39 (1984)

    Article  ADS  Google Scholar 

  79. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  80. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  81. Starobinsky, A.A.: The perturbation spectrum evolving from a nonsingular initially de Sitter cosmology and the microwave background anisotropy. Sov. Astron. Lett. 9, 302 (1983)

    ADS  Google Scholar 

  82. Steinwachs, C.F., Kamenshchik, A.Yu.: One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011)

    Google Scholar 

  83. Sugiyama, N., Futamase, T.: Non-Gaussianity generated in the inflationary scenario with nonminimally coupled inflaton field. Phys. Rev. D 81, 023504 (2010)

    Article  ADS  Google Scholar 

  84. Tarrach, R.: The pole mass in perturbative QCD. Nucl. Phys. B 183, 384 (1981)

    Article  ADS  Google Scholar 

  85. Vilenkin, A.: Quantum creation of universes. Phys. Rev. D 30, 509 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  86. Watanabe, Y.: Rate of gravitational inflaton decay via gauge trace anomaly. Phys. Rev. D 83, 043511 (2011)

    Article  ADS  Google Scholar 

  87. Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking S. W., Israel W. (eds.) General relativity: an Einstein centenary survey, pp. 790–831 (1979). (Chapter 16)

    Google Scholar 

  88. Zee, A.: Broken-symmetric theory of gravity. Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  89. Zeldovich, Y.B., Starobinsky, A.A.: Quantum creation of a universe in a nontrivial topology. Sov. Astron. Lett. 10, 135 (1984)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Friedrich Steinwachs .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinwachs, C.F. (2014). Non-minimal Higgs Inflation. In: Non-minimal Higgs Inflation and Frame Dependence in Cosmology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01842-3_6

Download citation

Publish with us

Policies and ethics