One-Loop Cosmology and Frame Dependence

Part of the Springer Theses book series (Springer Theses)


We will start with the most technical chapter of this thesis because the results obtained in this part will serve as a basis for the cosmological investigations of the Higgs inflation scenario we will discuss in Chap.  6. We will make use of the generalised Schwinger–DeWitt algorithm discussed in Sect.  4.5 in order to calculate the one-loop effective action for gravity coupled to scalar fields—a setup especially interesting in the cosmological context of inflation.


Scalar Field Effective Action Configuration Space Conformal Transformation Einstein Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Effective equations of motion and initial conditions for inflation in quantum cosmology. Nucl. Phys. B 532, 339 (1998)Google Scholar
  2. 2.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. Phys. Rev. D 48, 3677 (1993)Google Scholar
  3. 3.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropart. Phys. 12, 003 (2009)Google Scholar
  4. 4.
    Barvinsky, A.O., Kamenshchik, A.Yu.: Higgs boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C. 72, 2219 (2012)Google Scholar
  5. 5.
    Barvinsky, A.O., Vilkovisky, G.A.: The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity. Phys. Lett. B 131, 313 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    Barvinsky, A.O., Vilkovisky, G.A.: The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rep. 119, 1 (1985)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Bezrukov, F.L., Shaposhnikov, M.: The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Borchers, H.J.: Über die Mannigfaltigkeit der interpolierenden Felder zu einer kausalen S-Matrix. Nuovo Cimento 15, 784 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer, New York (2010)Google Scholar
  11. 11.
    Coleman, S.R., Weinberg, E.J.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the Standard Model. Phys. Lett. B 678, 1 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    DeWitt, B.S.: Dynamical theory of groups and fields. Blackie & Son, London (1965)zbMATHGoogle Scholar
  14. 14.
    DeWitt, B.S.: Quantum theory of gravity. I. Canonical theory. Phys. Rev. 160, 1113 (1967)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Dicke, R.H.: Mach’s principle and Invariance under Transformation of Units. Phys. Rev. 125, 2163 (1962)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Esposito, G., Kamenshchik, A.Yu., Pollifrone, G.: Euclidian Quantum Gravity on Manifolds with Boundary. Springer, New York (1997)Google Scholar
  17. 17.
    Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999)ADSGoogle Scholar
  18. 18.
    Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Kallosh, R.E., Tyutin, I.V.: The Equivalence theorem and gauge invariance in renormalizable theories. Yad. Fiz. 17, 190 (1973)MathSciNetGoogle Scholar
  20. 20.
    Parker, L., Christensen, S.M.: MathTensor: A system for Doing Tensor Analysis by Computer. Addison-Wesley, Redwood City (1994)Google Scholar
  21. 21.
    Parker, L.E., Toms, D.J.: Quantum Field Theory in Curved Spactime. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  22. 22.
    Shapiro, I.L., Takata, H.: One-loop renormalization of the four-dimensional theory for quantum dilaton gravity. Phys. Rev. D 52, 2162 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Steinwachs, C.F., Kamenshchik, A.Yu.: One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011)Google Scholar
  24. 24.
    ’t Hooft, G. and Veltman, M. J. G., : One-loop divergencies in the theory of gravitation. Ann. Inst. Henri Poincaré A 20, 69 (1974)Google Scholar
  25. 25.
    Tyutin, I.V.: Parametrization dependence of nonlinear quantum field theories (in Russian). Yad. Fiz. 35, 222 (1982)MathSciNetGoogle Scholar
  26. 26.
    Vilkovisky, G.A.: The unique effective action in quantum field theory. Nucl. Phys. B 234, 125 (1984)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations