Part of the Springer Theses book series (Springer Theses)


From the four types of interactions present in our world, only electromagnetism and gravity are long-range interactions. The weak and the strong interactions are so short-ranged that they cannot be responsible for the large-scale behaviour of our universe. However, despite its long range character, electromagnetism cannot be the dominant force in an electrically neutral universe. The only long range interaction that remains is gravity, whose source is energy density. Thus, a theory of the cosmos must be based on a theory of gravity. The best gravitational theory we have so far is Einstein’s theory of General Relativity [9, 10]. In contrast to the Standard Model, which is a quantum field theory, General Relativity is a classical field theory. Aside from this, the distinctive feature of gravity compared to the other fundamental interactions is that it is not a theory defined on space-time, but a theory of space-time itself. The physical foundation of General Relativity is the equivalence principle, which states that gravity uniformly couples to all kind of energy density. Mathematically, space-time is described by a pseudo-Riemannian manifold \(\mathcal{M}\) and the gravitational field by the metric field \(g_{\mu \nu }(x)\) on \(\mathcal{M}\). The gravitational interaction manifests itself geometrically as curvature of space-time.


Cosmic Microwave Background Friedmann Equation Scalar Perturbation Conformal Time Angular Power Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962)Google Scholar
  3. 3.
    Aurich, R., Lustig, S., Steiner, F.: CMB anisotropy of the Poincaré dodecahedron. Class Quantum Gravity 22, 2061 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Baumann, D.: TASI lectures on inflation. (2009) [160 pages] (cited on 19 Dec 2011)
  5. 5.
    Bunch, T., Davies, P.: Quantum field theory in de Sitter space: renormalization by point splitting. Proc. Roy. Soc. Lond. A 360, 117 (1978)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: Large-angle anomalies in the CMB. Adv. Astron. 2010, 847541 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Cornish, N.J., Spergel, D.N., Starkman, G.D., Komatsu, E.: Constraining the topology of the Universe. Phys. Rev. Lett. 92, 201302 (2004)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Davies, P.C.W.: Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    Einstein, A.: Die Feldgleichungen der Gravitation. Sitzber. kgl.-preuß. Akad. Wiss. Berlin, Sitzung der phys.-math. Klasse, XLVIII, 844 (1915)Google Scholar
  10. 10.
    Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Berlin), 4th series, 49, 769 (1916)Google Scholar
  11. 11.
    Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    Guth, A.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Origin of classical structure in the universe. J. Phys. Conf. Ser. 67, 012023 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class Quantum Gravity 24, 1699 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Kiefer, C., Polarski, D., Starobinsky, A.A.: Quantum-to-classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7, 455 (1998)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Lachièze-Rey, M., Luminet, J.-P.: Cosmic topology. Phys. Rep. 254, 135 (1995)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Maldacena, J.M.: Non-gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 05, 013 (2003)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and a nonsingular universe. JETP Lett. 33, 532 (1981). (In Russian)ADSGoogle Scholar
  22. 22.
    Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183, 1057 (1969)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Perlmutter, S., et al. (Supernova Cosmology Project): Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)Google Scholar
  26. 26.
    Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, New York (2009)Google Scholar
  27. 27.
    Starobinsky, A.A.: Spectrum of relict gravitational radiation and early state of the universe. JETP Lett. 30, 682 (1979)ADSGoogle Scholar
  28. 28.
    Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    Straumann, N.: From primordial quantum fluctuations to the anisotropies of the cosmic microwave background radiation. Ann. Phys. (Leipzig) 15, 701 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations