Skip to main content

Discontinuous Galerkin for the Radiative Transport Equation

  • Chapter
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 157))

Abstract

This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

AMS(MOS) subject classifications. 65N35, 65N22, 65F05, 35J05

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “flux” is used in two different contexts. In the radiation transport context, we use the terms “angular flux” and “scalar flux.” In the DG context, we use the notion of “numerical flux.” These two notions are unfortunately unrelated but commonly employed in the radiation transport and DG literature, respectively. To avoid confusion, we always try to use the proper adjective in this paper.

References

  1. M. L. Adams. Discontinuous finite element methods in thick diffusive problems. Nucl. Sci. Eng., 137:298–333, 2001.

    Google Scholar 

  2. B. Ayuso and L. D. Marini. Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 47(2): 1391–1420, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška and M. Suri. On locking and robustness in the finite element method. SIAM J. Numer. Anal., 29(5):1261–1293, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Chandrasekhar. Radiative Transfer. Oxford University Press, 1950.

    Google Scholar 

  5. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution problems, I. Springer-Verlag, Berlin, Germany, 1992. ISBN 3-540-50205-X; 3-540-66101-8.

    Google Scholar 

  6. A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal., 44(2): 753–778, 2006.

    Google Scholar 

  7. J.-L. Guermond and G. Kanschat. Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit. SIAM J. Numer. Anal., 48(1):53–78, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. W. Larsen. Deterministic transport methods. Technical Report LA-9533-PR, Los Alamos Scientific Laboratory, Los Alamos, NM, 1982.

    Google Scholar 

  9. E. W. Larsen. On numerical solutions of transport problems in the diffusion limit. Nucl. Sci. Engr., 83:90–99, 1983.

    Google Scholar 

  10. E. W. Larsen and J. B. Keller. Asymptotic solution of neutron transport problems for small mean free paths. J. Mathematical Phys., 15:75–81, 1974.

    Article  MathSciNet  Google Scholar 

  11. E. W. Larsen and J. E. Morel. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II. J. Comput. Phys., 83(1):212–236, 1989.

    Google Scholar 

  12. E. W. Larsen, J. E. Morel, and W. F. Miller, Jr. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys., 69(2):283–324, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89–123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974.

    Google Scholar 

  14. F. Malvagi and G. C. Pomraning. Initial and boundary conditions for diffusive linear transport problems. J. Math. Phys., 32(3):805–820, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. C. Ragusa, J.-L. Guermond, and G. Kanschat. A robust S N -DG-approximation for radiation transport in optically thick and diffusive regimes. J. Comput. Phys., 231(4):1947–1962, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Reed and T. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Department of Homeland Security under agreement 2008-DN-077-ARI018-02, National Science Foundation grants DMS-0713829, DMS-0810387, and CBET-0736202, and is partially supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Guermond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guermond, JL., Kanschat, G., Ragusa, J.C. (2014). Discontinuous Galerkin for the Radiative Transport Equation. In: Feng, X., Karakashian, O., Xing, Y. (eds) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-01818-8_7

Download citation

Publish with us

Policies and ethics