Advertisement

An Overview of the Discontinuous Petrov Galerkin Method

  • Leszek F. DemkowiczEmail author
  • Jay Gopalakrishnan
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 157)

Abstract

We discuss our current understanding of the discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions and provide a literature review on the subject.

Keywords

Discontinuous Petrov Galerkin Optimal testing 

Notes

Acknowledgements

The work of the author Leszek F. Demkowicz was supported by the Department of Energy under Award Number DE-FC52-08NA28615.

References

  1. [1]
    I. Babuška. Error-bounds for finite element method. Numer. Math, 16, 1970/1971.Google Scholar
  2. [2]
    A.T. Barker, S.C. Brenner, E.-H. Park, and L.-Y. Sung. A one-level additive Schwarz preconditioner for a discontinuous Petrov–Galerkin method. Technical report, Dept. of Math., Luisiana State University, 2013. http://arxiv.org/abs/1212.2645.Google Scholar
  3. [3]
    P. Bochev and M.D. Gunzburger. Least-Squares Finite Element Methods, volume 166 of Applied Mathematical Sciences. Springer Verlag, 2009.Google Scholar
  4. [4]
    C.L. Bottasso, S. Micheletti, and R. Sacco. The discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg., 191: 3391–3409, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C.L. Bottasso, S. Micheletti, and R. Sacco. A multiscale formulation of the discontinuous Petrov-Galerkin method for advective-diffusive problems. Comput. Methods Appl. Mech. Engrg., 194:2819–2838, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J.H. Bramble, R.D. Lazarov, and J.E. Pasciak. A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comp, 66, 1997.Google Scholar
  7. [7]
    J. Bramwell, L. Demkowicz, J. Gopalakrishnan, and W. Qiu. A locking-free hp DPG method for linear elasticity with symmetric stresses. Num. Math., 2012. accepted.Google Scholar
  8. [8]
    T. Bui-Thanh, L. Demkowicz, and O. Ghattas. Constructively well-posed approximation methods with unity inf-sup and continuity. Math. Comp. accepted.Google Scholar
  9. [9]
    T. Bui-Thanh, L. Demkowicz, and O. Ghattas. A unified discontinuous Petrov-Galerkin Method and its analysis for Friedrichs’ systems. Technical Report 34, ICES, 2011. SIAM J. Num. Anal., revised version submitted.Google Scholar
  10. [10]
    T. Bui-Thanh, O. Ghattas, and L. Demkowicz. A relation between the discontinuous Petrov–Galerkin method and the Discontinuous Galerkin Method. Technical Report 45, ICES, 2011.Google Scholar
  11. [11]
    V.C. Calo, N.O. Collier, and A.H. Niemi. Analysis of the discontinuous Petrov–Galerkin method with optimal test functions for the Reissner–Mindlin plate bending model. In preparation.Google Scholar
  12. [12]
    P. Causin and R. Sacco. A discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal., 43, 2005.Google Scholar
  13. [13]
    P. Causin, R. Sacco, and C.L. Bottasso. Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems. M2AN Math. Model. Numer. Anal., 39:1087–1114, 2005.Google Scholar
  14. [14]
    O. Cessenat and B. Després. Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional helmholtz problem. SIAM J. Numer. Anal., 35(1):255–299, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Chan and L. Demkowicz. Global properties of DPG test spaces for convection–diffusion problems. Technical report, ICES, 2013. In preparation.Google Scholar
  16. [16]
    J. Chan, L. Demkowicz, R. Moser, and N. Roberts. A class of Discontinuous Petrov–Galerkin methods. Part V: Solution of 1D Burgers and Navier–Stokes equations. Technical Report 25, ICES, 2010.Google Scholar
  17. [17]
    J. Chan, T. Ellis, L. Demkowicz, and N. Roberts. Element conservation properties in DPG method. Technical report, ICES, 2013. In preparation.Google Scholar
  18. [18]
    J. Chan, N. Heuer, Tan Bui-Thanh B., and L. Demkowicz. Robust DPG method for convection-dominated diffusion problems II: Natural inflow condition. Technical Report 21, ICES, June 2012. submitted to Comput. Math. Appl.Google Scholar
  19. [19]
    B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of Discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Al Cohen, W. Dahmen, and G. Welper. Adaptivity and variational stabilization for convection-diffusion equations. Technical Report 323, Institut fuer Geometrie und Praktische Mathematik, 2011.Google Scholar
  21. [21]
    W. Dahmen, Ch. Huang, Ch. Schwab, and G. Welper. Adaptive Petrov Galerkin methods for first order transport equations. Technical Report 321, Institut fuer Geometrie und Praktische Mathematik, 2011.Google Scholar
  22. [22]
    L. Demkowicz. Computing with hp Finite Elements. I.One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, October 2006.Google Scholar
  23. [23]
    L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation. Comput. Methods Appl. Mech. Engrg., (23–24):1558–1572, 2010. see also ICES Report 2009–12.Google Scholar
  24. [24]
    L. Demkowicz and J. Gopalakrishnan. Analysis of the DPG method for the Poisson problem. SIAM J. Num. Anal., 49(5):1788–1809, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions. Numer. Meth. Part. D. E., 27: 70–105, 2011. see also ICES Report 9/16.Google Scholar
  26. [26]
    L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Engrg., 213–216:126–138, 2012.MathSciNetCrossRefGoogle Scholar
  27. [27]
    L. Demkowicz, J. Gopalakrishnan, and A. Niemi. A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity. Appl. Numer. Math., 62(4):396–427, 2012. see also ICES Report 2010/1.Google Scholar
  28. [28]
    L. Demkowicz, J. Gopalakrishnan, and J. Wang. A primal DPG method with no numerical traces. 2013. In preparation.Google Scholar
  29. [29]
    L. Demkowicz and N. Heuer. Robust DPG method for convection-dominated diffusion problems. Technical report, ICES, 2011. SIAM J. Num. Anal., in review.Google Scholar
  30. [30]
    L. Demkowicz and J. Li. Numerical simulations of cloaking problems using a DPG method. Comp. Mech., 2012. In print.Google Scholar
  31. [31]
    L. Demkowicz and J. T. Oden. An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. Journal of Computational Physics, 68(1):188–273, 1986.MathSciNetCrossRefGoogle Scholar
  32. [32]
    L. Demkowicz and J. T. Oden. An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables. Comput. Methods Appl. Mech. Engrg., 55(1–2):65–87, 1986.MathSciNetGoogle Scholar
  33. [33]
    J. Gopalakrishnan and W. Qiu. An analysis of the practical DPG method. Math. Comp., 2012. accepted.Google Scholar
  34. [34]
    D. Moro, N.C. Nguyen, and J. Peraire. A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws. Int.J. Num. Meth. Eng., 2011. in print.Google Scholar
  35. [35]
    A.H. Niemi, J.A. Bramwell, and L.F. Demkowicz. Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics. Comput. Methods Appl. Mech. Engrg., 200:1291–1300, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.H. Niemi, N.O. Collier, and V.M. Calo. Automatically stabilized discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm. 2011. In preparation.Google Scholar
  37. [37]
    A.H. Niemi, N.O. Collier, and V.M. Calo. Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems. Journal of Computational Science, 2011. In press.Google Scholar
  38. [38]
    J.T. Oden, L. Demkowicz, T. Strouboulis, and Ph. Devloo. Accuracy Estimates and Adaptive Refinements in Finite Element Computations, chapter Adaptive Methods for Problems in Solid and Fluid Mechanics. John Wiley and Sons Ltd., London, 1986.Google Scholar
  39. [39]
    J.T. Oden and L.F. Demkowicz. Applied Functional Analysis for Science and Engineering. Chapman & Hall/CRC Press, Boca Raton, 2010. Second edition.Google Scholar
  40. [40]
    N. Roberts, Tan Bui-Thanh B., and L. Demkowicz. The DPG method for the Stokes problem. Technical Report 22, ICES, June 2012. submitted to Comput. Math. Appl.Google Scholar
  41. [41]
    N.V. Roberts, D. Ridzal, P.B. Bochev, and L. Demkowicz. A toolbox for a class of discontinuous Petrov-Galerkin methods using Trilinos. Technical Report SAND2011-6678, Sandia National Laboratories, 2011.Google Scholar
  42. [42]
    H. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Springer, 2008.Google Scholar
  43. [43]
    Ch. Wieners and B. Wohlmuth. Robust operator estimates. Technical report, Oberwolfach Reports, 2013.Google Scholar
  44. [44]
    K. Yosida. Functional Analysis. Springer-Verlag, New York, 4 edition, 1974.CrossRefzbMATHGoogle Scholar
  45. [45]
    J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. Calo. A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation problems. J. Comp. Phys., 230:2406–2432, 2011.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  2. 2.Department of MathematicsPortland State UniversityPortlandUSA

Personalised recommendations