A dG Approach to Higher Order ALE Formulations in Time

  • Andrea BonitoEmail author
  • Irene Kyza
  • Ricardo H. Nochetto
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 157)


We review recent results (Bonito et al., SIAM J. Numer. Anal., to appear; Bonito et al., Numer. Math., to appear; Bonito et al., in preparation) on time-discrete discontinuous Galerkin (dG) methods for advection-diffusion model problems defined on deformable domains and written on the arbitrary Lagrangian Eulerian (ALE) framework. ALE formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. We describe the construction of higher order in time numerical schemes enjoying stability properties independent of the arbitrary extension chosen. Our approach is based on the validity of Reynolds’ identity for dG methods which generalize to higher order schemes the geometric conservation law (GCL) condition. Stability, a priori and a posteriori error analyses are briefly discussed and illustrated by insightful numerical experiments.


ALE formulations Moving domains Domain velocity Material derivative Discrete Reynolds’ identities dG-methods in time Stability Geometric conservation law 



The work of the Andrea Bonito author was supported in part by NSF Grant DMS-0914977. The work of the Irene Kyza author was supported in part by the European Social Fund (ESF)-European Union (EU) and National Resources of the Greek State within the framework of the Action “Supporting Postdoctoral Researchers” of the Operational Programme “Education and Lifelong Learning (EdLL)”. The work of the Ricardo H. Nochetto author was supported in part by NSF Grants DMS-0807811 and DMS-1109325.


  1. [1]
    G. Akrivis and Ch. Makridakis. Galerkin time-stepping methods for nonlinear parabolic equations. M2AN Math. Model. Numer. Anal., 38(2):261–289, 2004.Google Scholar
  2. [2]
    G. Akrivis, Ch. Makridakis, and R.H. Nochetto. A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp., 75(254):511–531, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    G. Akrivis, Ch. Makridakis, and R.H. Nochetto. Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math., 114(1):133–160, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Akrivis, Ch. Makridakis, and R.H. Nochetto. Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math., 118(3):429–456, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Badia and R. Codina. Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework. SIAM J. Numer. Anal., 44(5):2159–2197 (electronic), 2006.Google Scholar
  6. [6]
    E. Bänsch. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math., 88(2):203–235, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Boffi and L. Gastaldi. Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Engrg., 193(42–44):4717–4739, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A posteriori error analysis. In preparation.Google Scholar
  9. [9]
    A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A priori error analysis. Numer. Math., 125(2):225–257, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: Stability. SIAM J. Numer. Anal., 51(1):577–604, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Bonito, R.H. Nochetto, and M.S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229(9):3171–3188, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Bonito, R.H. Nochetto, and M.S. Pauletti. Dynamics of biomembranes: Effect of the bulk fluid. Math. Model. Nat. Phenom., 6(5):25–43, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.Google Scholar
  14. [14]
    S. Brogniez, A. Rajasekharan, and Ch. Farhat. Provably stable and time-accurate extensions of Runge-Kutta schemes for CFD computations on moving grids. Internat. J. Numer. Methods Fluids, 69(7):1249–1270, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. Chrysafinos and N.J. Walkington. Lagrangian and moving mesh methods for the convection diffusion equation. M2AN Math. Model. Numer. Anal., 42(1):25–55, 2008.Google Scholar
  16. [16]
    J. Donéa, S. Giuliani, and J.P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Engrg., 33(1–3):689–723, 1982.CrossRefzbMATHGoogle Scholar
  17. [17]
    Ch. Farhat, Ph. Geuzaine, and C. Grandmont. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys., 174(2):669–694, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Ch. Farhat and Ph. Geuzaine. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Internat. J. Numer. Methods Fluids, 193(39–41):4073–4095, 2004.Google Scholar
  19. [19]
    Ch. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Internat. J. Numer. Methods Fluids, 21(10): 807–835, 1995. Finite element methods in large-scale computational fluid dynamics (Tokyo, 1994).Google Scholar
  20. [20]
    L. Formaggia and F. Nobile. A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 7(2): 105–131, 1999.MathSciNetzbMATHGoogle Scholar
  21. [21]
    L. Formaggia and F. Nobile. Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Engrg., 193(39–41): 4097–4116, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    L. Gastaldi. A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 9(2):123–156, 2001.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Ph. Geuzaine, C. Grandmont, and Ch. Farhat. Design and analysis of ale schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics, 191(1):206–227, 2003.CrossRefzbMATHGoogle Scholar
  24. [24]
    H. Guillard and Ch. Farhat. On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Engrg., 190(11–12):1467–1482, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Hansbo, J. Hermansson, and T. Svedberg. Nitsche’s method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg., 193(39–41):4195–4206, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J. Comput. Phys. 14 (1974), no. 3, 227–253]. J. Comput. Phys., 135(2):198–216, 1997. With an introduction by L. G. Margolin, Commemoration of the 30th anniversary {of J. Comput. Phys.}.Google Scholar
  27. [27]
    T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 29(3):329–349, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal., 15(5): 912–928, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J. A. Mackenzie and W. R. Mekwi. An unconditionally stable second-order accurate ALE-FEM scheme for two-dimensional convection-diffusion problems. IMA J. Numer. Anal., 32(3):888–905, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Ch. Makridakis and R.H. Nochetto. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104(4):489–514, 2006.Google Scholar
  31. [31]
    F. Nobile. Numerical approximation on fluid-structure interaction problems with application to haemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.Google Scholar
  32. [32]
    L.A. Ortega and G. Scovazzi. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements. J. Comput. Phys., 230(17):6709–6741, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    O. Pironneau, J. Liou, and T. Tezduyar. Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equations with time-dependent domains. Comput. Methods Appl. Mech. Engrg., 100(1):117–141, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Quarteroni and L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system, volume XII of Handb. Numer. Anal. North-Holland, Amsterdam, 2004.Google Scholar
  35. [35]
    A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci., 2(4):163–197, 2000.CrossRefzbMATHGoogle Scholar
  36. [36]
    P.D. Thomas and C.K. Lombard. The geometric conservation law–a link between finite-difference and finite–volume methods for flow computation on moving grids. AIAA Paper 78–1208, 1978.Google Scholar
  37. [37]
    V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrea Bonito
    • 1
    Email author
  • Irene Kyza
    • 2
    • 3
  • Ricardo H. Nochetto
    • 4
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Division of MathematicsUniversity of DundeeDundeeScotland, UK
  3. 3.Institute of Applied and Computational Mathematics–FORTHHeraklion-CreteGreece
  4. 4.Department of Mathematics and Institute of Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations