Advertisement

From the Virasoro Algebra to Krichever–Novikov Type Algebras and Beyond

  • Martin SchlichenmaierEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

Starting from the Virasoro algebra and its relatives the generalization to higher genus compact Riemann surfaces was initiated by Krichever and Novikov. The elements of these algebras are meromorphic objects which are holomorphic outside a finite set of points. A crucial and non-trivial point is to establish an almost-grading replacing the honest grading in the Virasoro case. Such an almost-grading is given by splitting the set of points of possible poles into two non-empty disjoint subsets. Krichever and Novikov considered the two-point case. Schlichenmaier studied the most general multi-point situation with arbitrary splittings. Here we will review the path of developments from the Virasoro algebra to its higher genus and multi-point analogs. The starting point will be a Poisson algebra structure on the space of meromorphic forms of all weights. As sub-structures the vector field algebras, function algebras, Lie superalgebras and the related current algebras show up. All these algebras will be almost-graded. In detail almost-graded central extensions are classified. In particular, for the vector field algebra it is essentially unique. The defining cocycle is given in geometric terms. Some applications, including the semi-infinite wedge form representations are recalled. We close by giving some remarks on the Lax operator algebras introduced recently by Krichever and Sheinman.

Keywords

Riemann Surface Meromorphic Function Central Extension Current Algebra Virasoro Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Partial support by the Internal Research Project GEOMQ11, University of Luxembourg, is acknowledged.

References

  1. 1.
    E. Arbarello, C. deConcini, V. Kac, C. Procesi, Moduli spaces of Curves and representation theory. Comm. Math. Phys. 117, 1–36 (1988)Google Scholar
  2. 2.
    A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1084)Google Scholar
  3. 3.
    L. Bonora, M. Martellini, M. Rinaldi, J. Russo, Neveu-Schwarz- and Ramond-type Superalgebras on genus g Riemann surfaces. Phys. Lett. B 206(3), 444–450 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Bonora, M. Rinaldi, J. Russo, K. Wu, The Sugawara construction on genus g Riemann surfaces. Phys. Lett. B208, 440–446 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Bonora, A. Lugo, M. Matone, J. Russo, A global operator formalism on higher genus Riemann surfaces: bc systems. Comm. Math. Phys. 123, 329–352 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. Bonora, M. Matone, F. Toppan, K. Wu, Real weight bc systems and conformal field theories in higher genus. Nuclear Phys. B 334(3), 716–744 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M.R. Bremner, On a Lie algebra of vector fields on a complex torus. J. Math. Phys. 31, 2033–2034 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M.R. Bremner, Structure of the Lie algebra of polynomial vector fields on the Riemann sphere with three punctures. J. Math. Phys. 32, 1607–1608 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M.R. Bremner, Four-point affine Lie algebras. Proc. Am. Math. Soc. 123, 1981–1989 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. Bryant, Graded Riemann surfaces and Krichever–Novikov algebras. Lett. Math. Phys. 19, 97–108 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Date, M. Jimbo, T. Miwa, M. Kashiwara, Transformation groups for soliton equations. Publ. RIMS, Kyoto 394 (1982)Google Scholar
  12. 12.
    Th. Deck, Deformations from Virasoro to Krichever–Novikov algebras. Phys. Lett. B 251, 335–540 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Dick, Krichever–Novikov-like bases on punctured Riemann surfaces. Lett. Math. Phys. 18, 255–265 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Fialowski, Formal Rigidity of the Witt and Virasoro Algebra, arXiv:1202.3132Google Scholar
  15. 15.
    A. Fialowski, M. Schlichenmaier, Global deformations of the Witt algebra of Krichever–Novikov type. Comm. Contemp. Math. 5(6), 921–946 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Fialowski, M. Schlichenmaier, Global geometric deformations of current algebras as Krichever–Novikov type algebras. Comm. Math. Phys. 260, 579–612 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Fialowski, M. Schlichenmaier, Global geometric deformations of the Virasoro algebra, current and affine algebras by Krichever–Novikov type algebras. Int. J. Theor. Phys. 46(11), 2708–2724 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Guieu, C. Roger, L’algèbre et le groupe de Virasoro (Les publications CRM, Montreal, 2007)zbMATHGoogle Scholar
  19. 19.
    R.C. Gunning, Lectures on Riemann Surfaces (Princeton Math. Notes, NJ, 1966)zbMATHGoogle Scholar
  20. 20.
    N.S. Hawley, M. Schiffer, Half-order differentials on Riemann surfaces. Acta Math. 115, 199–236 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V.G. Kac, Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    V.G. Kac, D.H. Petersen, Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Nat. Acad. Sci. USA 78, 3308–3312 (1981)CrossRefzbMATHGoogle Scholar
  23. 23.
    V. Kac, A. Raina, Highest Weight Representations of Infinite Dimensional Lie Algebras (World Scientific, Singapore, 1987)zbMATHGoogle Scholar
  24. 24.
    M. Kreusch, Extensions of Superalgebras of Krichever–Novikov Type, arXiv:1204.4338v2Google Scholar
  25. 25.
    I.M. Krichever, Vector bundles and Lax equations on algebraic curves. Comm. Math. Phys. 229, 229–269 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I.M. Krichever, S.P. Novikov, Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons. Funktional Anal. i. Prilozhen. 21(2), 46–63 (1987)MathSciNetGoogle Scholar
  27. 27.
    I.M. Krichever, S.P. Novikov, Virasoro type algebras, Riemann surfaces and strings in Minkowski space. Funktional Anal. i. Prilozhen. 21(4), 47–61 (1987)MathSciNetGoogle Scholar
  28. 28.
    I.M. Krichever, S.P. Novikov, Algebras of Virasoro type, energy-momentum tensors and decompositions of operators on Riemann surfaces. Funktional Anal. i. Prilozhen. 23(1), 46–63 (1989)MathSciNetCrossRefGoogle Scholar
  29. 29.
    I.M. Krichever, O.K. Sheinman, Lax operator algebras. Funct. Anal. Appl. 41, 284–294 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    S. Leidwanger, S. Morier-Genoud, Superalgebras associated to Riemann surfaces: Jordan algebras of Krichever–Novikov type. Int. Math. Res. Not. doi:10.1093/imrn/rnr196Google Scholar
  31. 31.
    S. Leidwanger, S. Morier-Genoud, Universal enveloping algebras of Lie antialgebras. Algebras Represent. Theor. 15(1), 1–27 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    V. Ovsienko, Lie antialgebras: prémices. J. Algebra 325(1), 216–247 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    A. Ruffing, Th. Deck, M. Schlichenmaier, String Branchings on complex tori and algebraic representations of generalized Krichever–Novikov algebras. Lett. Math. Phys. 26, 23–32 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    V.A. Sadov, Bases on multipunctured Riemann surfaces and interacting string amplitudes. Comm. Math. Phys. 136, 585–597 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces, 2nd enlarged edition (Springer, Berlin, 2007). 1st edition published 1989Google Scholar
  36. 36.
    M. Schlichenmaier, Central extensions and semi-infinite wedge representations of Krichever–Novikov algebras for more than two points. Lett. Math. Phys. 20, 33–46 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    M. Schlichenmaier, Krichever–Novikov algebras for more than two points. Lett. Math. Phys. 19, 151–165 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    M. Schlichenmaier, Krichever–Novikov algebras for more than two points: explicit generators. Lett. Math. Phys. 19, 327–336 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    M. Schlichenmaier, Verallgemeinerte Krichever - Novikov Algebren und deren Darstellungen. Ph.D. thesis, Universität Mannheim, 1990Google Scholar
  40. 40.
    M. Schlichenmaier, Degenerations of generalized Krichever–Novikov algebras on tori. J. Math. Phys. 34, 3809–3824 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Schlichenmaier, Differential operator algebras on compact Riemann surfaces, in Generalized Symmetries in Physics, ed. by H.-D. Doebner, V.K. Dobrev, A.G. Ushveridze (Clausthal, 1993) (World Scientific, Singapore, 1994), pp. 425–434Google Scholar
  42. 42.
    M. Schlichenmaier, Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin-Toeplitz-Quantisierung und globale Algebren der zweidimensionalen konformen Feldtheorie. Habilitation Thesis, University of Mannheim, June 1996Google Scholar
  43. 43.
    M. Schlichenmaier, Sugawara operators for higher genus Riemann surfaces. Rep. Math. Phys. 43, 323–339 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    M. Schlichenmaier, Elements of a global operator approach to Wess–Zumino–Novikov–Witten models, in Lie Theory and Its Applications in Physics III, ed. by H.D. Doebner, V.K. Dobrev, J. Hilgert (Clausthal, July 1999) (World Scientific, Singapore, 2000), pp. 204–220. arXiv:math/0001040Google Scholar
  45. 45.
    M. Schlichenmaier, Higher genus affine Lie algebras of Krichever–Novikov type. Moscow Math. J. 3, 1395–1427 (2003)MathSciNetzbMATHGoogle Scholar
  46. 46.
    M. Schlichenmaier, Local cocycles and central extensions for multi-point algebras of Krichever–Novikov type. J. reine angew. Math. 559, 53–94 (2003)MathSciNetzbMATHGoogle Scholar
  47. 47.
    M. Schlichenmaier, Higher genus affine Lie algebras of Krichever–Novikov type, in Proceedings of the International Conference on Difference Equations, Special Functions, and Applications, Munich (World-Scientific, Singapore, 2007)Google Scholar
  48. 48.
    M. Schlichenmaier, Deformations of the Witt, Virasoro, and current algebra, in Generalized Lie Theory in Mathematics, Physics and Beyond, ed. by Silvestrov et al. (Springer, Berlin, 2009), pp. 219–234Google Scholar
  49. 49.
    M. Schlichenmaier, Almost-graded central extensions of Lax operator algebras. Banach Center Publ. 93, 129–144 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    M. Schlichenmaier, An Elementary Proof of the Vanishing of the Second Cohomology of the Witt and Virasoro Algebra with Values in the Adjoint Module, arXiv:1111.6624v1, 2011. doi:10.1515/forum-2011–0143, February 2012Google Scholar
  51. 51.
    M. Schlichenmaier, Lie Superalgebras of Krichever–Novikov Type. Almost-Grading and Central Extensions, arXiv:1301.0484Google Scholar
  52. 52.
    M. Schlichenmaier, Krichever–Novikov Algebras. Theory and Applications (forthcoming)Google Scholar
  53. 53.
    M. Schlichenmaier, O.K. Sheinman, Sugawara construction and Casimir operators for Krichever–Novikov algebras. J. Math. Sci. 92, 3807–3834 (1998). Translated from Itoki Nauki i Tekhniki 38, q-alg/9512016 (1996)Google Scholar
  54. 54.
    M. Schlichenmaier, O.K. Sheinman, Wess-Zumino-Witten-Novikov theory, Knizhnik-Zamolodchikov equations, and Krichever-Novikov algebras, I. Russian Math. Surv. (Uspekhi Math. Nauk.) 54, 213–250 (1999), math.QA/9812083Google Scholar
  55. 55.
    M. Schlichenmaier, O.K. Sheinman, Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras. Russ. Math. Surv. 59(4), 737–770 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    M. Schlichenmaier, O.K. Sheinman, Central extensions of Lax operator algebras. Uspheki Math. Mauk. 63(4), 131–172 (2008); Russ. Math. Surv. 63(4), 727–766 (2008)Google Scholar
  57. 57.
    M. Schlichenmaier, Multipoint Lax operator algebras. Almost-graded structure and central extensions. arXiv:1304.3902 (2013)Google Scholar
  58. 58.
    O.K. Sheinman, Elliptic affine Lie algebras. Funktional Anal. i Prilozhen. 24(3), 210–219 (1992)MathSciNetCrossRefGoogle Scholar
  59. 59.
    O.K. Sheinman, Highest Weight modules over certain quasi-graded Lie algeebras on elliptic curves. Funktional Anal. i Prilozhen. 26(3), 203–208 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    O.K. Sheinman, Affine Lie algebras on Riemann surfaces. Funktional Anal. i Prilozhen. 27(4), 54–62 (1993)MathSciNetGoogle Scholar
  61. 61.
    O.K. Sheinman, Modules with highest weight for affine Lie algebras on Riemann surfaces. Funktional Anal. i Prilozhen. 29(1), 44–55 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    O.K. Sheinman, Second order casimirs for the affine Krichever–Novikov algebras \(\widehat{\mathfrak{g}\mathfrak{l}}_{g,2}\) and \(\widehat{\mathfrak{s}\mathfrak{l}}_{g,2}\). Moscow Math. J. 1, 605–628 (2001)MathSciNetzbMATHGoogle Scholar
  63. 63.
    O.K. Sheinman, The fermion model of representations of affine Krichever–Novikov algebras. Funktional Anal. i Prilozhen. 35(3), 209–219 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    O.K. Sheinman, Lax operator algebras and Hamiltonian integrable hierarchies. Russ. Math. Surv. 66, 145–171 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    O.K. Sheinman, Current Algebras on Riemann Surfaces. Expositions in Mathematics, vol. 58 (De Gruyter, Berlin, 2012)Google Scholar
  66. 66.
    A. Tsuchiya, K. Ueno, Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. 19, 459–566 (1989)MathSciNetGoogle Scholar
  67. 67.
    A.N. Tyurin, Classification of vector bundles on an algebraic curve of an arbitrary genus. Soviet Izvestia, ser. Math. 29, 657–688 (1969)Google Scholar
  68. 68.
    F. Wagemann, Some remarks on the cohomology of Krichever–Novikov algebras. Lett. Math. Phys. 47, 173–177 (1999). Erratum: Lett. Math. Phys. 52, 349 (2000)Google Scholar
  69. 69.
    F. Wagemann, More remarks on the cohomology of Krichever–Novikov algebras. Afr. Mat. 23(1), 41–52 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematics Research UnitUniversity of Luxembourg, FSTCLuxembourg-KirchbergLuxembourg

Personalised recommendations