Exponential Transforms, Resultants and Moments

  • Björn GustafssonEmail author
Part of the Trends in Mathematics book series (TM)


We give an overview of some recent developments concerning harmonic and other moments of plane domains, their relationship to the Cauchy and exponential transforms, and to the meromorphic resultant and elimination function. The paper also connects to certain topics in mathematical physics, for example domain deformations generated by harmonic gradients (Laplacian growth) and related integrable structures.


Cauchy transform Elimination function Exponential transform Laplacian growth Moment Polubarinova–Galin equation Quadrature domain Resultant String equation 



This work has been performed within the framework of the European Science Foundation Research Networking Programme HCAA and has been supported by the Swedish Research Council and the Göran Gustafsson Foundation.


  1. 1.
    D. Aharonov, H.S. Shapiro, Domains on which analytic functions satisfy quadrature identities. J. Analyse Math. 30, 39–73 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L.V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd edn (McGraw-Hill Book, New York, 1966)Google Scholar
  3. 3.
    H. Alexander, J. Wermer, Several complex variables and Banach algebras, vol. 35 of Graduate Texts in Mathematics, 3rd edn. (Springer, New York, 1998)Google Scholar
  4. 4.
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978). Translated from the Russian by K. Vogtmann and A. Weinstein, Graduate Texts in Mathematics, 60Google Scholar
  5. 5.
    R.W. Carey, J.D. Pincus, An exponential formula for determining functions. Indiana Univ. Math. J. 23, 1031–1042 (1973/74)Google Scholar
  6. 6.
    V.G. Cherednichenko, Inverse Logarithmic Potential Problem, Inverse and Ill-posed Problems Series (VSP, Utrecht, 1996)Google Scholar
  7. 7.
    P.J. Davis, The Schwarz Function and Its Applications (The Mathematical Association of America, Buffalo, NY, 1974). The Carus Mathematical Monographs, No. 17Google Scholar
  8. 8.
    H.M. Farkas, I. Kra, Riemann Surfaces, vol. 71 of Graduate Texts in Mathematics, 2nd edn. (Springer, New York, 1992)Google Scholar
  9. 9.
    J.D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, vol. 352 (Springer, Berlin, 1973)Google Scholar
  10. 10.
    L.A. Galin, Unsteady filtration with a free surface. C. R. (Doklady) Acad. Sci. URSS (N.S.) 47, 246–249 (1945)Google Scholar
  11. 11.
    B. Gustafsson, On a differential equation arising in a Hele-Shaw flow moving boundary problem. Ark. Mat. 22, 251–268 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Gustafsson, On quadrature domains and an inverse problem in potential theory. J. Analyse Math. 55, 172–216 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    B. Gustafsson, M. Putinar, An exponential transform and regularity of free boundaries in two dimensions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26, 507–543 (1998)Google Scholar
  14. 14.
    B. Gustafsson, M. Putinar, Linear analysis of quadrature domains. II. Isr. J. Math. 119, 187–216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    B. Gustafsson, M. Putinar, Linear Analysis of Quadrature Domains. IV, in Quadrature domains and their applications, vol. 156 of Oper. Theory Adv. Appl., (Birkhäuser, Basel, 2005), pp. 173–194Google Scholar
  16. 16.
    B. Gustafsson, A. Sebbar, Critical points of Green’s function and geometric function theory. Indiana Univ. J. 61, 939–1017 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    B. Gustafsson, H.S. Shapiro, What Is a Quadrature Domain? in Quadrature domains and their applications, vol. 156 of Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2005), pp. 1–25Google Scholar
  18. 18.
    B. Gustafsson, V. Tkachev, On the Jacobian of the harmonic moment map. Complex Anal. Oper. Theory 3, 399–417 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    B. Gustafsson, V.G. Tkachev, The resultant on compact Riemann surfaces. Comm. Math. Phys. 286, 313–358 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    B. Gustafsson, A. Vasilev, Conformal and Potential Analysis in Hele-Shaw Cells, Advances in Mathematical Fluid Mechanics (Birkhäuser Verlag, Basel, 2006)Google Scholar
  21. 21.
    F.R. Harvey, H.B. Lawson, Jr., On boundaries of complex analytic varieties. I. Ann. Math. (2) 102, 223–290 (1975)Google Scholar
  22. 22.
    D. Khavinson, M. Mineev-Weinstein, M. Putinar, Planar elliptic growth. Complex Anal. Oper. Theory 3, 425–451 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, The τ-function for analytic curves, in Random matrix models and their applications, vol. 40 of Math. Sci. Res. Inst. Publ. (Cambridge University Press, Cambridge, 2001), pp. 285–299Google Scholar
  24. 24.
    I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Comm. Math. Phys. 259, 1–44 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    O.S. Kuznetsova, V.G. Tkachev, Ullemar’s formula for the Jacobian of the complex moment mapping. Complex Var. Theory Appl. 49, 55–72 (2004)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Y.-L. Lin, Perturbation theorems for Hele-Shaw flows and their applications. Ark. Mat. 49, 357–382 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Marshakov, P. Wiegmann, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in two dimensions. Comm. Math. Phys. 227, 131–153 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Martin, M. Putinar, Lectures on Hyponormal Operators, vol. 39 of Operator Theory: Advances and Applications (Birkhäuser Verlag, Basel, 1989)Google Scholar
  29. 29.
    M. Mineev-Weinstein, A. Zabrodin, Whitham-Toda hierarchy in the Laplacian growth problem. J. Nonlinear Math. Phys. 8, 212–218 (2001). Nonlinear evolution equations and dynamical systems (Kolimbary, 1999)Google Scholar
  30. 30.
    J.D. Pincus, D. Xia, J.B. Xia, The analytic model of a hyponormal operator with rank one self-commutator. Integr. Equat. Oper. Theory 7, 516–535 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    P.Y. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR 47, 254–257 (1945)Google Scholar
  32. 32.
    M. Putinar, A two-dimensional moment problem. J. Funct. Anal. 80, 1–8 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Putinar, The L problem of moments in two dimensions. J. Funct. Anal. 94, 288–307 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Putinar, On a class of finitely determined planar domains. Math. Res. Lett. 1, 389–398 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M. Putinar, Linear analysis of quadrature domains. Ark. Mat. 33, 357–376 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    M. Putinar, Extremal solutions of the two-dimensional L-problem of moments. J. Funct. Anal. 136, 331–364 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    M. Putinar, Extremal solutions of the two-dimensional L-problem of moments. II. J. Approx. Theory 92, 38–58 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    M. Reissig, L. von Wolfersdorf, A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane. Ark. Mat. 31, 101–116 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech. 56, 609–618 (1972)CrossRefzbMATHGoogle Scholar
  40. 40.
    J. Ross, D. Witt Nyström, The Hele-Shaw flow and moduli of holomorphic discs. arXiv:1212.2337 [math.CV] (2012)Google Scholar
  41. 41.
    M. Sakai, A moment problem on Jordan domains. Proc. Am. Math. Soc. 70, 35–38 (1978)CrossRefzbMATHGoogle Scholar
  42. 42.
    M. Sakai, Quadrature Domains, vol. 934 of Lecture Notes in Mathematics (Springer, Berlin, 1982)Google Scholar
  43. 43.
    M. Schiffer, D.C. Spencer, Functionals of Finite Riemann Surfaces (Princeton University Press, Princeton, NJ, 1954)zbMATHGoogle Scholar
  44. 44.
    H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 9 (Wiley, New York, 1992). A Wiley-Interscience Publication.Google Scholar
  45. 45.
    F.R. Tian, A Cauchy integral approach to Hele-Shaw problems with a free boundary: the case of zero surface tension. Arch. Rational Mech. Anal. 135, 175–196 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    V.G. Tkachev, Ullemar’s formula for the moment map. II. Linear Algebra Appl. 404, 380–388 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    C. Ullemar, Uniqueness theorem for domains satisfying a quadrature identity for analytic functions, Research Bulletin TRITA-MAT-1980-37, Royal Institute of Technology, Department of Mathematics, Stockholm, 1980Google Scholar
  48. 48.
    A.N. Varchenko, P.I. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four, American Mathematical Society AMS University Lecture Series, 3rd edn. (Providence, Rhode Island, 1992)Google Scholar
  49. 49.
    A. Vasil′ev, From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal. Oper. Theory 3, 551–585 (2009)Google Scholar
  50. 50.
    Y.P. Vinogradov, P.P. Kufarev, On a problem of filtration. Akad. Nauk SSSR. Prikl. Mat. Meh. 12, 181–198 (1948)MathSciNetzbMATHGoogle Scholar
  51. 51.
    A. Weil, Scientific Works. Collected papers. Vol. I (1926–1951) (Springer, New York, 1979)Google Scholar
  52. 52.
    H. Weyl, Die Idee der Riemannschen Fläche, Vierte Auflage. Unveränderter Nachdruck der dritten, Vollständig umgearbeiteten Auflage, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1964Google Scholar
  53. 53.
    P.B. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies. Comm. Math. Phys. 213, 523–538 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    D.V. Yakubovich, Real separated algebraic curves, quadrature domains, Ahlfors type functions and operator theory. J. Funct. Anal. 236, 25–58 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    L. Zalcman, Some inverse problems of potential theory, in Integral geometry (Brunswick, Maine, 1984), vol. 63 of Contemp. Math., (Amer. Math. Soc., Providence, RI, 1987), pp. 337–350.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsKTHStockholmSweden

Personalised recommendations