Advertisement

Classical and Stochastic Löwner–Kufarev Equations

  • Filippo BracciEmail author
  • Manuel D. Contreras
  • Santiago Díaz-Madrigal
  • Alexander Vasil’ev
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we present a historical and scientific account of the development of the theory of the Löwner–Kufarev classical and stochastic equations spanning the 90-year period from the seminal paper by K. Löwner in 1923 to recent generalizations and stochastic versions and their relations to conformal field theory.

Keywords

Brownian motion Conformal mapping Evolution family Integrable system Kufarev Löwner Pommerenke Schramm Subordination chain 

References

  1. 1.
    M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds (Mediterranean Press, Rende, Cosenza, 1989)zbMATHGoogle Scholar
  2. 2.
    M. Abate, F. Bracci, M.D. Contreras, S. Díaz-Madrigal, The evolution of Loewner’s differential equations. Newslett. Eur. Math. Soc. 78, 31–38 (2010)zbMATHGoogle Scholar
  3. 3.
    D. Aharonov, S. Reich, D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces. Math. Proc. R. Ir. Acad. 99A(1), 93–104 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (AMS Chelsea Publishing, Providence, RI, 2010) (Reprint of the 1973 original)Google Scholar
  5. 5.
    L.A. Aksent’ev, P.L. Shabalin, Sufficient conditions for univalence and quasiconformal extendibility of analytic functions, in Handbook of Complex Analysis: Geometric Function Theory, vol. 1 (North-Holland, Amsterdam, 2002), pp. 169–206Google Scholar
  6. 6.
    S. Albeverio, R. Høegh-Krohn, Uniqueness and the global markov property for euclidean fields. The case of trigonometric interactions. Commun. Math. Phys. 68, 95–128 (1979)zbMATHGoogle Scholar
  7. 7.
    I.A. Aleksandrov, V.V. Chernikov, Pavel Parfen’evich Kufarev. Obituary (in Russian), Uspehi Mat. Nauk 24, 181–184 (1969)Google Scholar
  8. 8.
    I.A. Aleksandrov, S.A. Kopanev, On mutual growth of the modulus of a univalent function and of the modulus of its derivative. Sibirsk. Mat. Zh. 7, 23–30 (1966)MathSciNetzbMATHGoogle Scholar
  9. 9.
    I.A. Aleksandrov, S.A. Kopanev, The range of values of the derivative on the class of holomorphic univalent functions. Ukrain. Mat. Zh. 22, 660–664 (1970)MathSciNetzbMATHGoogle Scholar
  10. 10.
    I.A. Aleksandrov, V.I. Popov, Optimal controls and univalent functions. Ann. Univ. M. Curie-Sklodowska, Sec. A 22–24, 13–20 (1968–1970)Google Scholar
  11. 11.
    I.A. Aleksandrov, B.Ja. Krjučkov, V.I. Popov, The first coefficients of bounded holomorphic univalent functions. Dopovı̄dı̄ Akad. Nauk Ukraïn. RSR Ser. A 1, 3–5 (1973)Google Scholar
  12. 12.
    I.A. Aleksandrov, G.A. Popova, Extremal properties of univalent holomorphic functions with real coefficients. Sibirsk. Mat. Ž. 14, 915–926 (1973)MathSciNetzbMATHGoogle Scholar
  13. 13.
    I.A. Aleksandrov, G.G. Zavozin, S.A. Kopanev, Optimal controls in coefficient problems for univalent functions. Differencial’nye Uravnenija 12(4), 599–611 (1976)MathSciNetGoogle Scholar
  14. 14.
    I.A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions (Nauka, Moscow, 1976)zbMATHGoogle Scholar
  15. 15.
    S.T. Aleksandrov, V.V. Sobolev, Extremal problems in some classes of functions, univalent in the half plane, having a finite angular residue at infinity. Siberian Math. J. 27, 145–154 (1986). Translation from Sibirsk. Mat. Zh. 27, 3–13 (1986)Google Scholar
  16. 16.
    L. Arosio, Resonances in Loewner equations. Adv. Math. 227, 1413–1435 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    L. Arosio, Basins of attraction in Loewner equations. Ann. Acad. Sci. Fenn. Math. 37, 563–570 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    L. Arosio, F. Bracci, Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds. Anal. Math. Phys. 1(4), 337–350 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    L. Arosio, F. Bracci, E. Fornæss Wold, Solving the Loewner PDE in complete hyperbolic starlike domains of \({\mathbb{C}}^{N}\), Adv. Math. 242, 209–216 (2013)MathSciNetGoogle Scholar
  20. 20.
    L. Arosio, F. Bracci, H. Hamada, G. Kohr, An abstract approach to Löwner chains. J. Anal. Math. 119(1), 89–114 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    K. Astala, P. Jones, A. Kupiainen, E. Saksman, Random curves by conformal welding. Compt. Rend. Math. 348(5–6), 257–262 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  23. 23.
    M. Bauer, D. Bernard, SLEk growth processes and conformal field theories. Phys. Lett. B 543(1–2), 135–138 (2002)MathSciNetzbMATHGoogle Scholar
  24. 24.
    M. Bauer, D. Bernard, Conformal field theories of stochastic Loewner evolutions. Comm. Math. Phys. 239(3), 493–521 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    R.O. Bauer, R.M. Friedrich, On radial stochastic Loewner evolution in multiply connected domains. J. Funct. Anal. 237, 565–588 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    R.O. Bauer, R.M. Friedrich, On chordal and bilateral SLE in multiply connected domains. Math. Z. 258, 241–265 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    J. Basilewitsch, Sur les théorèmes de Koebe-Bieberbach. Rec. Math. [Mat. Sbornik] N.S. 1(43)(3), 283–291 (1936)Google Scholar
  28. 28.
    J. Basilewitsch, D’une propriété extrémale de la fonction \(F(z) = \frac{z} {{(1-z)}^{2}}\). Rec. Math. [Mat. Sbornik] N.S. 12(54)(3), 315–319 (1943)Google Scholar
  29. 29.
    I.E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. N.S. 37(79), 471–476 (1955)Google Scholar
  30. 30.
    I.E. Bazilevič, Generalization of an integral formula for a subclass of univalent functions. Mat. Sb. N.S. 64 (106), 628–630 (1964)Google Scholar
  31. 31.
    J. Becker, Löwnersche, Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J. Reine Angew. Math. 255, 23–43 (1972)zbMATHGoogle Scholar
  32. 32.
    J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete. J. Reine Angew. Math. 354, 74–94 (1984)MathSciNetzbMATHGoogle Scholar
  33. 33.
    V. Beffara, The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)MathSciNetzbMATHGoogle Scholar
  34. 34.
    A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)MathSciNetzbMATHGoogle Scholar
  35. 35.
    E. Berkovich, B. Shein, Odyssey of Fritz Noether. Epilogue, Notes in Jewish History (2009), no. 11(114), JulyGoogle Scholar
  36. 36.
    E. Berkson, H. Porta, Semigroups of holomorphic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)MathSciNetzbMATHGoogle Scholar
  37. 37.
    L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Ein- heitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 940–955 (1916)Google Scholar
  38. 38.
    Bill of indictment on L.A. Vishnevskiĭ. February 15, 1938. NovosibirskGoogle Scholar
  39. 39.
    K.I. Bobenko, On the theory of extremal problems for univalent functions of class S. Trudy Mat. Inst. Steklov. vol. 101 (Izdat. “Nauka”, Moscow, 1972)Google Scholar
  40. 40.
    E. Bombieri, On the local maximum property of the Koebe function. Inv. Math. 4, 26–67 (1967)MathSciNetzbMATHGoogle Scholar
  41. 41.
    F. Bracci, M. D. Contreras, S. Díaz-Madrigal, Pluripotential theory, semigroups and boundary behaviour of infinitesimal generators in strongly convex domains. J. Eur. Math. Soc. 12, 23–53 (2010)zbMATHGoogle Scholar
  42. 42.
    F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Evolution families and the Löwner equation I: the unit disk. J. Reine Angew. Math. 672, 1–37 (2012)MathSciNetzbMATHGoogle Scholar
  43. 43.
    F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, Evolution Families and the Löwner Equation II: complex hyperbolic manifolds. Math. Ann. 344, 947–962 (2009)MathSciNetzbMATHGoogle Scholar
  44. 44.
    F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Semigroups versus evolution families in the Löwner theory. J. Anal. Math. 115(1), 273–292 (2011)MathSciNetGoogle Scholar
  45. 45.
    L. de Branges, A proof of the Bieberbach conjecture. Preprint E-5-84, Leningrad Branch of the Steklov Institute of Mathematics, LOMI, Leningrad, 1984Google Scholar
  46. 46.
    L. de Branges, A proof of the Bieberbach conjecture. Acta Math. 154(1–2), 137–152 (1985)MathSciNetzbMATHGoogle Scholar
  47. 47.
    D. Bshouty, W. Hengartner, A variation of the Koebe mapping in a dense subset of S. Can. J. Math. 39(7), 54–73 (1987)Google Scholar
  48. 48.
    J. Cardy, Boundary conformal field theory, in Encyclopedia of Mathematical Physics, ed. by J.-P. Francoise, G. Naber, S. Tsun Tsou (Elsevier, Amsterdam, 2006), pp. 333–340Google Scholar
  49. 49.
    L. Carleson, N. Makarov, Aggregation in the plane and Loewner’s equation. Comm. Math. Phys. 216, 583–607 (2001)MathSciNetzbMATHGoogle Scholar
  50. 50.
    A. Carverhill, Flows of stochastic dynamical systems: ergodic theory. Stochastics 14(4), 273–317 (1985)MathSciNetzbMATHGoogle Scholar
  51. 51.
    D.Y.C. Chan, B.D. Hughes, L. Paterson, Ch. Sirakoff, Simulating flow in porous media. Phys. Rev. A 38(8), 4106–4120 (1988)MathSciNetGoogle Scholar
  52. 52.
    D. Chelkak, S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)MathSciNetzbMATHGoogle Scholar
  53. 53.
    M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Löwner chains in the unit disk. Rev. Mat. Iberoam. 26(3), 975–1012 (2010)MathSciNetzbMATHGoogle Scholar
  54. 54.
    M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Local duality in Löwner equations. J. Nonlinear Convex Anal. (to appear). Available in http://arxiv.org/pdf/1202.2334.pdf
  55. 55.
    M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus I: evolution families and differential equations. Trans. Am. Math. Soc. 365, 2505–2543 (2013)zbMATHGoogle Scholar
  56. 56.
    M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus II: Loewner chains. Anal. Math. Phys. 1, 351–385 (2011)MathSciNetzbMATHGoogle Scholar
  57. 57.
    J. Conway, Functions of One Complex Variable II (Springer, New York, 1995)zbMATHGoogle Scholar
  58. 58.
    E. Date, M. Kashiwara, T. Miwa, Vertex operators and functions: transformation groups for soliton equations II. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 387–392 (1981)MathSciNetzbMATHGoogle Scholar
  59. 59.
    E. Date, M. Kashiwara, M. Jimbo, T. Miwa, Transformation groups for soliton equations. Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981) (World Sci. Publishing, Singapore, 1983), pp. 39–119Google Scholar
  60. 60.
    B. Davidovitch, H.G.E. Hentschel, Z. Olami, I. Procaccia, L.M. Sander, E. Somfai, Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E 59(2), 1368–1378 (1999)MathSciNetGoogle Scholar
  61. 61.
    B. Davidovitch, M.J. Feigenbaum, H.G.E. Hentschel, I. Procaccia, Conformal dynamics of fractal growth patterns without randomness. Phys. Rev. E 62(2), 1706–1715 (2000)Google Scholar
  62. 62.
    A. Dick, Emmy Noether. 1882–1935 (Birkhäuser, Basel, 1970)Google Scholar
  63. 63.
    L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd edn. Advanced Series in Mathematical Physics, vol. 26 (World Scientific, Singapore, 2003)Google Scholar
  64. 64.
    R.G. Douglas, Banach Algebra Techniques in Operator Theory, 2nd edn. Graduate Texts in Mathematics, vol. 179. (Springer, New York, 1998)Google Scholar
  65. 65.
    B. Doyon, Conformal loop ensembles and the stress–energy tensor: I. Fundamental notions of CLE. arXiv:0903.0372 (2009)Google Scholar
  66. 66.
    B. Doyon, Conformal loop ensembles and the stress–energy tensor: II. Construction of the stress–energy tensor. arXiv:0908.1511 (2009)Google Scholar
  67. 67.
    B. Doyon, Calculus on manifolds of conformal maps and CFT. J. Phys. A Math. Theor. 45(31), 315202 (2012)MathSciNetGoogle Scholar
  68. 68.
    P.L. Duren, H.S. Shapiro, A.L. Shields, Singular measures and domains not of Smirnov type. Duke Math. J. 33, 247–254 (1966)MathSciNetzbMATHGoogle Scholar
  69. 69.
    J. Dubédat, SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)zbMATHGoogle Scholar
  70. 70.
    D.A. Dubovikov, An analog of the Loëwner equation for mappings of strip. Izv. Vyssh. Uchebn. Zaved. Mat. 51(8), 77–80 2007 (Russian); translation in Russian Math. (Iz. VUZ) 51(8), 74–77 (2007)Google Scholar
  71. 71.
    P.L. Duren, M. Schiffer, The theory of the second variation in extremum problems for univalent functions. J. Anal. Math. 10, 193–252 (1962/1963)Google Scholar
  72. 72.
    P.L. Duren, Univalent Functions (Springer, New York, 1983)zbMATHGoogle Scholar
  73. 73.
    C.J. Earle, A.L. Epstein, Quasiconformal variation of slit domains. Proc. Am. Math. Soc. 129(11), 3363–3372 (2001)MathSciNetzbMATHGoogle Scholar
  74. 74.
    L.D. Faddeev, Discretized Virasoro Algebra. Contemporary Mathematics, vol. 391 (American Mathematical Society, Providence, RI, 2005), pp. 59–67Google Scholar
  75. 75.
    M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8(2), 85–89 (1933)Google Scholar
  76. 76.
    C.H. FitzGerald, Ch. Pommerenke, The de Branges theorem on univalent functions. Trans. Am. Math. Soc. 290, 683–690 (1985)MathSciNetzbMATHGoogle Scholar
  77. 77.
    J.E. Fornæss, N. Sibony, Increasing sequences of complex manifolds. Math. Ann. 255, 351–360 (1981)MathSciNetzbMATHGoogle Scholar
  78. 78.
    J.E. Fornæss, B. Stensønes, Stable manifolds of holomorphic hyperbolic maps. Int. J. Math. 15(8), 749–758 (2004)zbMATHGoogle Scholar
  79. 79.
    S. Friedland, M. Schiffer, Global results in control theory with applications to univalent functions. Bull. Am. Math. Soc. 82, 913–915 (1976)MathSciNetzbMATHGoogle Scholar
  80. 80.
    S. Friedland, M. Schiffer, On coefficient regions of univalent functions. J. Anal. Math. 31, 125–168 (1977)MathSciNetzbMATHGoogle Scholar
  81. 81.
    R. Friedrich, The global geometry of stochastic Loewner evolutions. Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57 (Mathematical Society of Japan, Tokyo, 2010), pp. 79–117Google Scholar
  82. 82.
    R. Friedrich, W. Werner, Conformal restriction, highest-weight representations and SLE. Comm. Math. Phys. 243(1), 105–122 (2003)MathSciNetzbMATHGoogle Scholar
  83. 83.
    L.A. Galin, Unsteady filtration with a free surface. Dokl. Akad. Nauk USSR 47, 246–249 (1945). (in Russian)MathSciNetzbMATHGoogle Scholar
  84. 84.
    R.V. Gamkrelidze, Foundations of Optimal Control Theory (Tbilisi University, Tbilisi, 1977)Google Scholar
  85. 85.
    P.R. Garabedian, M.A. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 4, 427–465 (1955)MathSciNetzbMATHGoogle Scholar
  86. 86.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974)MathSciNetzbMATHGoogle Scholar
  87. 87.
    F.W. Gehring, E. Reich, Area distortion under quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I 388, 1–14 (1966)MathSciNetGoogle Scholar
  88. 88.
    J.-L. Gervais, Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets. Phys. Lett. B 160(4–5), 277–278 (1985)MathSciNetGoogle Scholar
  89. 89.
    l. Gibbons, S.P. Tsarev, Conformal maps and reductions of the Benney equations. Phys. Lett. A 258(4–6), 263–271 (1999)Google Scholar
  90. 90.
    G.M. Goluzin, Über die Verzerrungssätze der schlichten konformen Abbildungen. Rec. Math. [Mat. Sbornik] N.S. 1(34)(1), 127–135 (1936)Google Scholar
  91. 91.
    G.M. Goluzin, Sur les théorèmes de rotation dans la théorie des fonctions univalentes. Rec. Math. [Mat. Sbornik] N.S. 1(43)(1), 293–296 (1936)Google Scholar
  92. 92.
    G.M. Goluzin, On the parametric representation of functions univalent in a ring. Mat. Sbornik N.S. 29(71), 469–476 (1951)Google Scholar
  93. 93.
    G.M. Goluzin, Geometrical Theory of Functions of a Complex Variable, 2nd edn. (Nauka, Moscow, 1966)Google Scholar
  94. 94.
    G. S. Goodman, Pontryagins Maximal Principle as a variational method in conformal mapping. Abstracts of Brief Scientific Communications, sec. 13 (ICM Moscow, 1966), pp. 7–8Google Scholar
  95. 95.
    G.S. Goodman, Univalent functions and optimal control, Ph.D. Thesis, Stanford University, 1968Google Scholar
  96. 96.
    V.V. Goryainov, V.Ya. Gutlyanskiĭ, Extremal Problems in the Class S M, Mathematics collection (Russian) (Izdat. “Naukova Dumka”, Kiev, 1976), pp. 242–246Google Scholar
  97. 97.
    V.V. Gorjainov, On a parametric method of the theory of univalent functions. Math. Notes 27(3–4), 275–279 (1980)MathSciNetGoogle Scholar
  98. 98.
    V.V. Gorjainov, Boundary functions of a system of functionals composed of values of a univalent function and its derivative. Soviet Math. (Iz. VUZ) 26(7), 91–94 (1982)Google Scholar
  99. 99.
    V.V. Gorjainov, Extremals in Estimates of Functionals Depending on Values of a Univalent Function and Its Derivative. Theory of Mappings and Approximation of Functions (“Naukova Dumka”, Kiev, 1983), pp. 38–49Google Scholar
  100. 100.
    V.V. Gorjainov, The Parametric Method and Extremal Conformal Mappings. Soviet Math. Dokl. 28(1), 205–208 (1983)Google Scholar
  101. 101.
    V.V. Goryainov, Semigroups of conformal mappings. Mat. Sb. (N.S.) 129(171)(4), 451–472 (1986) (Russian); translation in Math. USSR Sbornik 57, 463–483 (1987)Google Scholar
  102. 102.
    V.V. Goryajnov, Evolution families of analytic functions and time-inhomogeneous Markov branching processes. Dokl. Akad. Nauk 347(6) 729–731 (1996); translation in Dokl. Math. 53(2), 256–258 (1996)Google Scholar
  103. 103.
    V.V. Goryainov, The Löwner – Kufarev equation and extremal problems for conformal mappings with fixed points on the boundary (in Russian). Talk at the International Workshop on Complex Analysis and its Applications, Steklov Mathematical Institute, Moscow, 26 December 2011Google Scholar
  104. 104.
    V.V. Goryainov, I. Ba, Semigroups of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity. Ukrainian Math. J. 44, 1209–1217 (1992)MathSciNetGoogle Scholar
  105. 105.
    V.V. Goryainov, O.S. Kudryavtseva, One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (Russian); translation in Sbornik: Mathematics 202(7), 971–1000 (2011)Google Scholar
  106. 106.
    V.V. Goryainov, Semigroups of analytic functions in analysis and applications. Uspekhi Mat. Nauk 67(6), 5–52 (2012)MathSciNetGoogle Scholar
  107. 107.
    I. Graham, H. Hamada, G. Kohr, Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002)MathSciNetzbMATHGoogle Scholar
  108. 108.
    I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel Dekker, New York, 2003)zbMATHGoogle Scholar
  109. 109.
    I. Graham, H. Hamada, G. Kohr, M. Kohr, Asymptotically spirallike mappings in several complex variables. J. Anal. Math. 105 267–302 (2008)MathSciNetzbMATHGoogle Scholar
  110. 110.
    I. Graham, G. Kohr, J.A. Pfaltzgraff, The general solution of the Loewner differential equation on the unit ball in \({\mathbb{C}}^{n}\). Contemp. Math. (AMS) 382, 191–203 (2005)MathSciNetGoogle Scholar
  111. 111.
    I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel Dekker, New York, 2003)zbMATHGoogle Scholar
  112. 112.
    R. Greiner, O. Roth, On support points of univalent functions and a disproof of a conjecture of Bombieri. Proc. Am. Math. Soc. 129(12), 3657–3664 (2001)MathSciNetzbMATHGoogle Scholar
  113. 113.
    D. Grier, E. Ben-Jacob, R. Clarke, L.M. Sander, Morphology and Microstructure in Electrochemical Deposition of Zinc. Phys. Rev. Lett. 56, 1264–1267 (1986)Google Scholar
  114. 114.
    B. Gustafsson, A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells (Birkhäuser, Basel, 2006)Google Scholar
  115. 115.
    V.Ya. Gutlyanskiĭ, Parametric representation of univalent functions. Dokl. Akad. Nauk SSSR 194, 750–753 (1970)Google Scholar
  116. 116.
    V.Ya. Gutljanskĭ, Parametric Representations and Extremal Problems in the Theory of Univalent Functions (in Russian), Dissertation Dokt. Fiz.-Mat. Nauk, Mat. Inst. Akad. Nauk Ukrain. SSR, Kiev, 1972Google Scholar
  117. 117.
    H. Hamada, G. Kohr, J.R. Muir, Extension of L d-Loewner chains to higher dimensions. J. Anal. Math. 120(1), 357–392 (2013)MathSciNetGoogle Scholar
  118. 118.
    T.E. Harris, The Theory of Branching Processes. Corrected reprint of the 1963 original, Dover Phoenix Editions (Dover Publications, Mineola, NY, 2002)Google Scholar
  119. 119.
    T.C. Halsey, Diffusion-Limited Aggregation: A Model for Pattern Formation. Phys. Today 53(11), 36 (2000)Google Scholar
  120. 120.
    M.B. Hastings, Renormalization theory of stochastic growth. Phys. Rev. E 55(1), 135–152 (1987)MathSciNetGoogle Scholar
  121. 121.
    M.B. Hastings, L.S. Levitov, Laplacian growth as one-dimensional turbulence. Phys. D 116(1–2), 244–252 (1998)zbMATHGoogle Scholar
  122. 122.
    W.K. Hayman, Multivalent Functions (Cambridge University Press, Cambridge, 1958)zbMATHGoogle Scholar
  123. 123.
    M.H. Heins, Semigroups of holomorphic maps of a Riemann surface into itself which are homomorphs of the set of positive reals considered additively, in E.B. Christoffel—The Influence of His Work on Mathematics and the Physical Sciences (Bikhäuser, Basel, 1981), pp. 314–331Google Scholar
  124. 124.
    H.S. Hele-Shaw, The flow of water. Nature 58, 33–36 (1898)Google Scholar
  125. 125.
    Yu.E. Hohlov, S.D. Howison, C. Huntingford, J.R. Ockendon, A.A. Lacey, A model for non-smooth free boundaries in Hele-Shaw flows. Q. J. Mech. Appl. Math. 47, 107–128 (1994)MathSciNetGoogle Scholar
  126. 126.
    G. Ivanov, A. Vasil’ev, Lwner evolution driven by a stochastic boundary point. Anal. Math. Phys. 1(4), 387–412 (2011)Google Scholar
  127. 127.
    G. Ivanov, D. Prokhorov, A. Vasil’ev, Non-slit and singular solutions to the Loewner equation. Bull. Sci. Math. 136(3), 328–341 (2012)Google Scholar
  128. 128.
    V.G. Kac, Simple irreducible graded Lie algebras of finite growth. Math. USSR Izv. 2, 1271–1311 (1968); Izv. Akad. Nauk USSR Ser. Mat. 32, 1923–1967 (1968)Google Scholar
  129. 129.
    W. Kager, B. Nienhuis, L.P. Kadanoff, Exact solutions for Löwner evolutions. J. Stat. Phys. 115(3–4), 805–822 (2004)MathSciNetzbMATHGoogle Scholar
  130. 130.
    N.-G. Kang, N.G. Makarov, Gaussian free field and conformal field theory. arXiv: 1101.1024 [math.PR], 2011Google Scholar
  131. 131.
    N.-G. Kang, N.G. Makarov, Radial SLE martingale-observables. arXiv:1209.1615 [math.PR], 2012Google Scholar
  132. 132.
    H. Kesten, Hitting probabilities of random walks on \({\mathbb{Z}}^{d}\). Stoch. Proc. Appl. 25, 165–184 (1987)MathSciNetzbMATHGoogle Scholar
  133. 133.
    A.A. Kirillov, D.V. Yuriev, Representations of the Virasoro algebra by the orbit method. J. Geom. Phys. 5(3), 351–363 (1988)MathSciNetzbMATHGoogle Scholar
  134. 134.
    S. Kobayashi, Hyperbolic Complex Spaces (Springer, Berlin Heidelberg, 1998)zbMATHGoogle Scholar
  135. 135.
    Y. Komatu, Über eine Verschärfung des Löwnerschen Hilfssatzes. Proc. Imp. Acad. Tokyo 18, 354–359 (1942)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Y. Komatu, On conformal slit mapping of multiply-connected domains. Proc. Jpn. Acad. 26(7), 26–31 (1950)MathSciNetzbMATHGoogle Scholar
  137. 137.
    E.L. Korotyaev, P. Kargaev, Inverse problems generated by conformal mappings on complex plane with parallel slits. 2009, unpublished preprint.Google Scholar
  138. 138.
    E.L. Korotyaev, P. Kargaev, Estimates for periodic Zakharov–Shabat operators. J. Differ. Equat. 249, 76–93 (2010)MathSciNetzbMATHGoogle Scholar
  139. 139.
    E.L. Korotyaev, S. Kuksin, KdV Hamiltonian as function of actions. arXiv 1110.4475, 2011Google Scholar
  140. 140.
    I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, The τ-function for analytic curves. Random Matrix Models and Their Applications. Mathematical Sciences Research Institute Publications, vol. 40 (Cambridge University Press, Cambridge, 2001), pp. 285–299Google Scholar
  141. 141.
    I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Laplacian growth and Whitham equations of soliton theory. Phys. D 198(1–2), 1–28 (2004)MathSciNetzbMATHGoogle Scholar
  142. 142.
    I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Comm. Math. Phys. 259(1), 1–44 (2005)MathSciNetzbMATHGoogle Scholar
  143. 143.
    J. Krzyż, The radius of close-to-convexity within the family of univalent functions. Bull. Acad. Polon. Sci. 10, 201–204 (1962)zbMATHGoogle Scholar
  144. 144.
    P.P. Kufarev, On one-parameter families of analytic functions. Rec. Math. [Mat. Sbornik] N.S. 13(55), 87–118 (1943)Google Scholar
  145. 145.
    P.P. Kufarev, On integrals of a simplest differential equation with movable polar singularity in the right-hand side. Tomsk. Gos. Univ. Uchen. Zap. 1, 35–48 (1946)Google Scholar
  146. 146.
    P.P. Kufarev, Theorem on solutions to some differential equation. Tomsk. Gos. Univ. Učenye Zapiski 5, 20–21 (1947)Google Scholar
  147. 147.
    P.P. Kufarev, A remark on integrals of Löwner’s equation. Dokl. Akad. Nauk SSSR (N.S.) 57, 655–656 (1947)Google Scholar
  148. 148.
    P.P. Kufarev, On conformal mapping of complementary regions. Dokl. Akad. Nauk SSSR (N.S.) 73(5), 881–884 (1950)Google Scholar
  149. 149.
    P.P. Kufarev, A.E. Fales, On an extremal problem for complementary regions. Dokl. Akad. Nauk SSSR (N.S.) 81(6), 995–998 (1950)Google Scholar
  150. 150.
    P.P. Kufarev, A.E. Fales, On an extremal problem for complementary regions. Tomsk. Gos. Univ. Ucen. Zap. 17, 25–35 (1947)Google Scholar
  151. 151.
    P.P. Kufarev, V.V. Sobolev, L.V. Sporysheva, A certain method of investigation of extremal problems for functions that are univalent in the half-plane. Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200, 142–164 (1968)MathSciNetGoogle Scholar
  152. 152.
    M.P. Kuvaev, P.P. Kufarev, An equation of Löwner’s type for multiply connected regions. Tomsk. Gos. Univ. Uv. c. Zap. Mat. Meh. 25, 19–34 (1955)MathSciNetGoogle Scholar
  153. 153.
    G.V. Kuz’mina, Moduli of families of curves and quadratic differentials. Trudy Mat. Inst. Steklov. 139, 241 (1980)Google Scholar
  154. 154.
    M.A. Lavrent’ev, To the theory of conformal maps. Trav. Inst. Math. Stekloff 5, 159–245 (1934)Google Scholar
  155. 155.
    G.F. Lawler, An introduction to the stochastic Loewner evolution, in Random Walks and Geometry, ed. by V. Kaimonovich (de Gruyter, Berlin, 2004), pp. 261–293Google Scholar
  156. 156.
    G.F. Lawler, Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, vol. 114 (American Mathematical Society, Providence, RI, 2005)Google Scholar
  157. 157.
    G. Lawler, O. Schramm, W. Werner, Values of Brownian Intersection Exponents. I. Half-plane Exponents. Acta Math. 187(2), 237–273 (2001); Values of Brownian intersection exponents. II. Plane exponents. Acta Math. 187(2), 275–308 (2001); Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. H. Poincaré. Probab. Statist. 38(1), 109–123 (2002)Google Scholar
  158. 158.
    N.A. Lebedev, On parametric representation of functions regular and univalent in a ring (in Russian). Dokl. Akad. Nauk SSSR (N.S.) 103, 767–768 (1955)Google Scholar
  159. 159.
    N.A. Lebedev, The Area Principle in the Theory of Univalent Functions (Izdat. “Nauka”, Moscow, 1975)Google Scholar
  160. 160.
    P. Lévy, Processus Stochastiques et Mouvement Brownian (Gauthier-Villars, Paris, 1947)Google Scholar
  161. 161.
    E.P. Li, On the theory of univalent functions on a circular ring. Dokl. Akad. Nauk SSSR (N.S.) 92, 475–477 (1953)Google Scholar
  162. 162.
    J. Lind, A sharp condition for the Löwner equation to generate slits. Ann. Acad. Sci. Fenn. Math. 30(1), 143–158 (2005)MathSciNetzbMATHGoogle Scholar
  163. 163.
    J. Lind, D. Marshall, S. Rohde, Collisions and spirals of Loewner traces. Duke Math. J. 154(3), 527–573 (2010)MathSciNetzbMATHGoogle Scholar
  164. 164.
    J.E. Littlewood, R.E.A.C. Paley, A proof that an odd schlicht function has bounded coefficients. J. Lond. Math. Soc. 7, 167–169 (1932)Google Scholar
  165. 165.
    K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)MathSciNetzbMATHGoogle Scholar
  166. 166.
    K. Löwner, Über monotone Matrixfunktionen. Math. Z. 38, 177–216 (1934)MathSciNetGoogle Scholar
  167. 167.
    Ch. Loewner, Conservation laws in compressible fluid flow and associated mapping. J. Ration. Mech. Anal. 2, 537–561 (1953)MathSciNetzbMATHGoogle Scholar
  168. 168.
    B. Mandelbrot, Fractal aspects of the iteration of z → λ z(1 − z) for complex λ and z, in Non-Linear Dynamics, ed. by Robert H.G. Helleman. Annals of the New York Academy of Sciences, vol. 357 (New York Academy of Sciences, New York, 1979), pp. 249–259Google Scholar
  169. 169.
    I. Markina, D. Prokhorov, A. Vasil’ev, Sub-Riemannian geometry of the coefficients of univalent functions. J. Funct. Anal. 245(2), 475–492 (2007)Google Scholar
  170. 170.
    I. Markina, A. Vasil’ev, Virasoro algebra and dynamics in the space of univalent functions. Contemp. Math. 525, 85–116 (2010)Google Scholar
  171. 171.
    I. Markina, A. Vasil’ev, Evolution of smooth shapes and integrable systems. ArXiv: 1108.1007 [math-ph], 2011, pp. 25Google Scholar
  172. 172.
    A. Marshakov, P. Wiegmann, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in two dimensions. Comm. Math. Phys. 227(1), 131–153 (2002)MathSciNetzbMATHGoogle Scholar
  173. 173.
    D.E. Marshall, S. Rohde, The Löwner differential equation and slit mappings. J. Am. Math. Soc. 18(4), 763–778 (2005)MathSciNetzbMATHGoogle Scholar
  174. 174.
    M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, Integrable structure of interface dynamics. Phys. Rev. Lett. 84(22), 5106–5109 (2000)Google Scholar
  175. 175.
    M. Mineev-Weinstein, A. Zabrodin, Whitham-Toda hierarchy in the Laplacian growth problem. J. Nonlinear Math. Phys. 8, 212–218 (2001)MathSciNetzbMATHGoogle Scholar
  176. 176.
    R.V. Moody, A new class of Lie algebras. J. Algebra 10, 211–230 (1968)MathSciNetGoogle Scholar
  177. 177.
    J. Muñoz Porras, F. Pablos Romo, Generalized reciprocity laws. Trans. Am. Math. Soc. 360(7), 3473–3492 (2008)zbMATHGoogle Scholar
  178. 178.
    E. Nelson, The free Markov field. J. Funct. Anal. 12, 221–227 (1973)Google Scholar
  179. 179.
    L. Niemeyer, L. Pietronero, H.J. Wiessmann, Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984)MathSciNetGoogle Scholar
  180. 180.
    J. O’Connor, E.F. Robertson, Charles Loewner, MacTutor History of Mathematics archive, University of St AndrewsGoogle Scholar
  181. 181.
    K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Comm. Math. Phys. 31, 83–112 (1973); 42, 281–305 (1975)Google Scholar
  182. 182.
    E. Peschl, Zur Theorie der schlichten Funktionen. J. Reine Angew. Math. 176, 61–94 (1936)Google Scholar
  183. 183.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, 1995)Google Scholar
  184. 184.
    J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in \({\mathbb{C}}^{n}\). Math. Ann. 210, 55–68 (1974)MathSciNetzbMATHGoogle Scholar
  185. 185.
    J.A. Pfaltzgraff, Subordination chains and quasiconformal extension of holomorphic maps in \({\mathbb{C}}^{n}\). Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 13–25 (1975)MathSciNetzbMATHGoogle Scholar
  186. 186.
    G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet. S.-B. Kaiserl. Akad. Wiss. Wien, Math.-Natur. Kl. Abt. II a 126, 247–263 (1917)Google Scholar
  187. 187.
    P.Ya. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR 47(4), 254–257 (1945)Google Scholar
  188. 188.
    P.Ya. Polubarinova-Kochina, Concerning unsteady motions in the theory of filtration. Prikl. Matem. Mech. 9(1), 79–90 (1945)Google Scholar
  189. 189.
    Ch. Pommerenke, Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)MathSciNetzbMATHGoogle Scholar
  190. 190.
    Ch. Pommerenke, Univalent Functions, with a Chapter on Quadratic Differentials by G. Jensen (Vandenhoeck & Ruprecht, Göttingen, 1975)Google Scholar
  191. 191.
    Ch. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, Berlin, 1992)zbMATHGoogle Scholar
  192. 192.
    L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (A Pergamon Press Book. The Macmillan Co., New York, 1964)zbMATHGoogle Scholar
  193. 193.
    T. Poreda, On generalized differential equations in Banach spaces. Diss. Math. 310, 1–50 (1991)MathSciNetGoogle Scholar
  194. 194.
    V.I. Popov, The range of a system of functionals on the class S. Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 182(3), 106–132 (1965)Google Scholar
  195. 195.
    V.I. Popov, L.S. Pontrjagin’s maximum principle in the theory of univalent functions. Dokl. Akad. Nauk SSSR 188, 532–534 (1969)Google Scholar
  196. 196.
    N.V. Popova, Connection between the Löwner equation and the equation \(\frac{\mathit{dw}} {\mathit{dt}} = \frac{1} {w-\lambda (t)}\). Izv. Acad. Sci. Belorussian SSR 6, 97–98 (1954)Google Scholar
  197. 197.
    A. Pressley, G. Segal, Loop Groups. Oxford Mathematical Monographs (Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986)zbMATHGoogle Scholar
  198. 198.
    D.V. Prokhorov, The geometric characterization of functions from Bazilevič subclasses. Sov. Math. (Iz. VUZ) 19(2), 106–107 (1975)Google Scholar
  199. 199.
    D.V. Prokhorov, Optimal control method in an extremal problem on the class of univalent functions. Dokl. Akad. Nauk SSSR 275(4), 798–801 (1984)MathSciNetGoogle Scholar
  200. 200.
    D.V. Prokhorov, Value sets for systems of functionals in the classes of univalent functions. Mat. Sb. 181(12), 1659–1677 (1990)zbMATHGoogle Scholar
  201. 201.
    D.V. Prokhorov, The value set of initial coefficients for bounded univalent typically real functions. Sib. Mat. Zh. 32(5), 132–141 (1990)MathSciNetGoogle Scholar
  202. 202.
    D.V. Prokhorov, Reachable Set Methods in Extremal Problems for Univalent Functions (Saratov University, Saratov, 1993)zbMATHGoogle Scholar
  203. 203.
    D.V. Prokhorov, Even coefficient estimates for bounded univalent functions. Ann. Polon. Math. 58(3), 267–273 (1993)MathSciNetzbMATHGoogle Scholar
  204. 204.
    D.V. Prokhorov, Coefficients of functions close to the identity function. Complex Variables Theor. Appl. 33(1–4), 255–263 (1997)MathSciNetzbMATHGoogle Scholar
  205. 205.
    D.V. Prokhorov, Coefficients of holomorphic functions. Complex analysis and representation theory, 2. J. Math. Sci. (New York) 106(6), 3518–3544 (2001)Google Scholar
  206. 206.
    D.V. Prokhorov, A.A. Nikulin, Asymptotic estimates for the coefficients of bounded univalent functions. Sibirsk. Mat. Zh. 47(5), 1128–1138 (2006)MathSciNetzbMATHGoogle Scholar
  207. 207.
    D. Prokhorov, A. Vasil’ev, Univalent functions and integrable systems. Comm. Math. Phys. 262(2), 393–410 (2006)Google Scholar
  208. 208.
    D. Prokhorov, A. Vasil’ev, Optimal control in Bombieri’s and Tammi’s conjectures. Georgian Math. J. 12(4), 743–761 (2005)Google Scholar
  209. 209.
    D. Prokhorov, A. Vasil’ev, Singular and tangent slit solutions to the Löwner equation, in Analysis and Mathematical Physics, Trends in Mathematics (Birkhäuser, Basel, 2009), pp. 455–463Google Scholar
  210. 210.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic Press, New York, 1980), p. 400zbMATHGoogle Scholar
  211. 211.
    S. Reich, D Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups. Abstr. Appl. Anal. 3(1–2), 203–228 (1998)MathSciNetzbMATHGoogle Scholar
  212. 212.
    S. Reich, D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces (Imperial College Press, London, 2005)zbMATHGoogle Scholar
  213. 213.
    M.S. Robertson, A remark in the odd schlicht functions. Bull. Am. Math. Soc. 42(6), 366–370 (1936)Google Scholar
  214. 214.
    M.S. Robertson, Applications of the subordination principle to univalent functions. Pacific J. Math. 11, 315–324 (1961)MathSciNetzbMATHGoogle Scholar
  215. 215.
    R.M. Robinson, Bounded univalent functions. Trans. Am. Math. Soc. 52, 426–449 (1942)zbMATHGoogle Scholar
  216. 216.
    S. Rohde, O. Schramm, Basic properties of SLE. Ann. Math. 161(2), 883–924 (2005)MathSciNetzbMATHGoogle Scholar
  217. 217.
    S. Rohde, Oded Schramm: from circle packing to SLE. Ann. Probab. 39(5), 1621–1667 (2011)MathSciNetzbMATHGoogle Scholar
  218. 218.
    M. Rosenblum, J. Rovnyak, Topics in Hardy Classes and Univalent Functions (Birkhäuser Verlag, Basel, 1994)zbMATHGoogle Scholar
  219. 219.
    M. Röckner, Markov property of generalized fields and axiomatic potential theory. Math. Ann. 264, 153–177 (1983)MathSciNetzbMATHGoogle Scholar
  220. 220.
    M. Röckner, Generalized Markov fields and Dirichlet forms. Acta Applicandae Math. 3, 285–311 (1985)zbMATHGoogle Scholar
  221. 221.
    I. Rushkin, E. Bettelheim, I.A. Gruzberg, P. Wiegmann, Critical curves in conformally invariant statistical systems. J. Phys. A Math. Theor. 40, 2165–2195 (2007)MathSciNetzbMATHGoogle Scholar
  222. 222.
    M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear Partial Differential Equations in Applied Science Tokyo, 1982. North-Holland Mathematics Studies, vol. 81 (North-Holland, Amsterdam, 1983), pp. 259–271Google Scholar
  223. 223.
    A. Savakis, S. Maggelakis, Models of shrinking clusters with applications to epidermal wound healing. Math. Comput. Model. 25(6), 1–6 (1997)zbMATHGoogle Scholar
  224. 224.
    G. Segal, G. Wilson, Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)MathSciNetzbMATHGoogle Scholar
  225. 225.
    A.C. Schaeffer, D.C. Spencer, The coefficients of schlicht functions. II 12, 107–125 (1945)MathSciNetzbMATHGoogle Scholar
  226. 226.
    A.C. Schaeffer, D.C. Spencer, Coefficient Regions for Schlicht Functions. American Mathematical Society Colloquium Publications, vol. 35 (American Mathematical Society, New York, NY, 1950)Google Scholar
  227. 227.
    M. Schiffer, D.C. Spencer, Functionals of Finite Riemann Surfaces (Princeton University Press, Princeton, NJ, 1954)zbMATHGoogle Scholar
  228. 228.
    M. Schiffer, O. Tammi, On the fourth coefficient of bounded univalent functions. Trans. Am. Math. Soc. 119(1965), 67–78MathSciNetzbMATHGoogle Scholar
  229. 229.
    M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, 2nd edn. Lecture Notes in Physics, vol. 759 (Springer, Berlin, 2008)Google Scholar
  230. 230.
    O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)MathSciNetzbMATHGoogle Scholar
  231. 231.
    O. Schramm, S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)MathSciNetzbMATHGoogle Scholar
  232. 232.
    O. Schramm, S. Sheffield, A contour line of the continuum Gaussian free field. arXiv: 1008.2447, 2010Google Scholar
  233. 233.
    D.-S. Shah, Le-le Fan, On the parametric representation of quasi-conformal mappings. Sci. Sin. 11, 149–162 (1962)zbMATHGoogle Scholar
  234. 234.
    S. Sheffield, Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009)MathSciNetzbMATHGoogle Scholar
  235. 235.
    T. Sheil-Small, Some remarks on Bazilevič functions. J. Anal. Math. 43, 1–11 (1983/1984)Google Scholar
  236. 236.
    B.M. Shein, Private communication, 2012Google Scholar
  237. 237.
    L. Siewierski, Sharp estimation of the coefficients of bounded univalent functions close to identity. Diss. Math. 86, 1–153 (1971)MathSciNetGoogle Scholar
  238. 238.
    A.G. Siskakis, Semigroups of composition operators and the Cesàro operator on H p(D), PhD Thesis, University of Illinois, 1985Google Scholar
  239. 239.
    A.G. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review. Contemp. Math. 213, 229–252 (1998)MathSciNetGoogle Scholar
  240. 240.
    S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239–244 (2001)zbMATHGoogle Scholar
  241. 241.
    T.T. Soong, Random Differential Equations in Science and Engineering. Mathematics in Science and Engineering, vol. 103 (Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1973)Google Scholar
  242. 242.
    Lad. Špaček, Contribution à la théorie des fonctions univalentes. Čas. Mat. Fys. 62(2), 12–19 (1932)Google Scholar
  243. 243.
    T. Takebe, L.-P. Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies. J. Phys. A 39(37), 11479–11501 (2006)MathSciNetzbMATHGoogle Scholar
  244. 244.
    O. Tammi, On the maximalization of the coefficient a 3 of bounded schlicht functions. Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys. 149, 1–14 (1953)Google Scholar
  245. 245.
    O. Tammi, On optimizing parameters of the power inequality for a 4 in the class of bounded univalent functions. Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys. 560, 1–24 (1973)Google Scholar
  246. 246.
    O. Tammi, Extremal Problems for Bounded Univalent Functions, Lecture Notes in Mathematics, vol. 646 (Springer, New York, 1978)Google Scholar
  247. 247.
    O. Tammi, Extremal Problems for Bounded Univalent Functions, II, Lecture Notes in Mathematics, vol. 913 (Springer, New York, 1982)Google Scholar
  248. 248.
    F. Tricomi, Sull’iterazione delle funzioni di linee. Giorn. Math. Battaglini 55, 1–8 (1917)Google Scholar
  249. 249.
    J. Tsai, The Loewner driving function of trajectory arcs of quadratic differentials. J. Math. Anal. Appl. 360, 561–576 (2009)MathSciNetzbMATHGoogle Scholar
  250. 250.
    A. Vasil’ev, Mutual change of initial coefficients of univalent functions. Matemat. Zametki 38(1), 56–65 (1985)Google Scholar
  251. 251.
    A. Vasil’ev, Value set \(\{f(r_{1}),f(r_{2})\}\) for the class of univalent functions with real coefficients. Sib. Mat. Zh. 27(6), 28–32 (1986)Google Scholar
  252. 252.
    A. Vasil’ev, Optimal control methods in an extremal problem on a class of solutions of the Loewner-Kufarev equation. Diff. Uravneniya 26(3), 386–392 (1990)Google Scholar
  253. 253.
    A. Vasil’ev, From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal. Oper. Theor. 3(2), 551–585 (2009)Google Scholar
  254. 254.
    T. Vicsek, Fractal Growth Phenomena (World Scientific Publishing, Singapore, 1989)zbMATHGoogle Scholar
  255. 255.
    M. Voda, Solution of a Loewner chain equation in several variables. J. Math. Anal. Appl. 375(1), 58–74 (2011)MathSciNetzbMATHGoogle Scholar
  256. 256.
    G.C. Wick, The evaluation of the collision matrix. Phys. Rev. 80(2), 268–272 (1950)MathSciNetzbMATHGoogle Scholar
  257. 257.
    P.B. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies. Comm. Math. Phys. 213(3), 523–538 (2000)MathSciNetzbMATHGoogle Scholar
  258. 258.
    A.S. Wightman, Hilberts Sixth Problem: Mathematical Treatment of the Axioms of Physics, ed. by F.E. Browder. Proceedings of Symposia in Pure Mathematics (part 1), vol. 28 (American Mathematical Society, Providence, RI, 1976), pp. 241–268Google Scholar
  259. 259.
    E. Witten, Quantum field theory, Grassmannians, and algebraic curves. Comm. Math. Phys. 113(4), 529–600 (1988)MathSciNetGoogle Scholar
  260. 260.
    T.A. Witten, Jr., L.M. Sander, Diffusion-limited aggregation, and kinetic critical phenomenon. Phys. Rev. Lett. 47(2), 1400–1403 (1981)Google Scholar
  261. 261.
    T.A. Witten, L.M. Sander, Diffusion-limited aggregation. Phys. Rev. B 27(9), 5686–5697 (1983)MathSciNetGoogle Scholar
  262. 262.
    N.J. Zabusky, M.D. Krushkal, Interaction of solitons in a collisionless plasma and initial states. Phys. Rev. Lett. 15, 240–243 (1965)zbMATHGoogle Scholar
  263. 263.
    V.E. Zaharov, L.D. Faddeev, The Korteweg-de Vries equation is a fully integrable Hamiltonian system. Funkcional. Anal. i Prilozh. 5(5), 18–27 (1971)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Filippo Bracci
    • 1
    Email author
  • Manuel D. Contreras
    • 2
  • Santiago Díaz-Madrigal
    • 2
  • Alexander Vasil’ev
    • 3
  1. 1.Dipartimento Di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Departamento de Matemática Aplicada II, Escuela Técnica Superior de IngenieríaUniversidad de SevillaSevillaSpain
  3. 3.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations