Skip to main content

Classical and Stochastic Löwner–Kufarev Equations

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this paper we present a historical and scientific account of the development of the theory of the Löwner–Kufarev classical and stochastic equations spanning the 90-year period from the seminal paper by K. Löwner in 1923 to recent generalizations and stochastic versions and their relations to conformal field theory.

Mathematics Subject Classification (2000). Primary 01A70 ⋅ 30C35; Secondary 17B68 ⋅ 70H06 ⋅ 81R10

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    I have also some personal interest to this story because me, Falkovich and Shein worked in different periods at the same Saratov State University. A. Vasil’ev

  2. 2.

    See also [20] for an extension of this notion to complex manifolds and with a complete different approach even in the unit disk. The construction of a Löwner chain associated with a given evolution family proposed there differs essentially from the one we used in [53, Theorems 1.3 and 1.6].

References

  1. M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds (Mediterranean Press, Rende, Cosenza, 1989)

    MATH  Google Scholar 

  2. M. Abate, F. Bracci, M.D. Contreras, S. Díaz-Madrigal, The evolution of Loewner’s differential equations. Newslett. Eur. Math. Soc. 78, 31–38 (2010)

    MATH  Google Scholar 

  3. D. Aharonov, S. Reich, D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces. Math. Proc. R. Ir. Acad. 99A(1), 93–104 (1999)

    MathSciNet  MATH  Google Scholar 

  4. L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (AMS Chelsea Publishing, Providence, RI, 2010) (Reprint of the 1973 original)

    Google Scholar 

  5. L.A. Aksent’ev, P.L. Shabalin, Sufficient conditions for univalence and quasiconformal extendibility of analytic functions, in Handbook of Complex Analysis: Geometric Function Theory, vol. 1 (North-Holland, Amsterdam, 2002), pp. 169–206

    Google Scholar 

  6. S. Albeverio, R. Høegh-Krohn, Uniqueness and the global markov property for euclidean fields. The case of trigonometric interactions. Commun. Math. Phys. 68, 95–128 (1979)

    MATH  Google Scholar 

  7. I.A. Aleksandrov, V.V. Chernikov, Pavel Parfen’evich Kufarev. Obituary (in Russian), Uspehi Mat. Nauk 24, 181–184 (1969)

    Google Scholar 

  8. I.A. Aleksandrov, S.A. Kopanev, On mutual growth of the modulus of a univalent function and of the modulus of its derivative. Sibirsk. Mat. Zh. 7, 23–30 (1966)

    MathSciNet  MATH  Google Scholar 

  9. I.A. Aleksandrov, S.A. Kopanev, The range of values of the derivative on the class of holomorphic univalent functions. Ukrain. Mat. Zh. 22, 660–664 (1970)

    MathSciNet  MATH  Google Scholar 

  10. I.A. Aleksandrov, V.I. Popov, Optimal controls and univalent functions. Ann. Univ. M. Curie-Sklodowska, Sec. A 22–24, 13–20 (1968–1970)

    Google Scholar 

  11. I.A. Aleksandrov, B.Ja. Krjučkov, V.I. Popov, The first coefficients of bounded holomorphic univalent functions. Dopovı̄dı̄ Akad. Nauk Ukraïn. RSR Ser. A 1, 3–5 (1973)

    Google Scholar 

  12. I.A. Aleksandrov, G.A. Popova, Extremal properties of univalent holomorphic functions with real coefficients. Sibirsk. Mat. Ž. 14, 915–926 (1973)

    MathSciNet  MATH  Google Scholar 

  13. I.A. Aleksandrov, G.G. Zavozin, S.A. Kopanev, Optimal controls in coefficient problems for univalent functions. Differencial’nye Uravnenija 12(4), 599–611 (1976)

    MathSciNet  Google Scholar 

  14. I.A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions (Nauka, Moscow, 1976)

    MATH  Google Scholar 

  15. S.T. Aleksandrov, V.V. Sobolev, Extremal problems in some classes of functions, univalent in the half plane, having a finite angular residue at infinity. Siberian Math. J. 27, 145–154 (1986). Translation from Sibirsk. Mat. Zh. 27, 3–13 (1986)

    Google Scholar 

  16. L. Arosio, Resonances in Loewner equations. Adv. Math. 227, 1413–1435 (2011)

    MathSciNet  MATH  Google Scholar 

  17. L. Arosio, Basins of attraction in Loewner equations. Ann. Acad. Sci. Fenn. Math. 37, 563–570 (2012)

    MathSciNet  MATH  Google Scholar 

  18. L. Arosio, F. Bracci, Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds. Anal. Math. Phys. 1(4), 337–350 (2011)

    MathSciNet  MATH  Google Scholar 

  19. L. Arosio, F. Bracci, E. Fornæss Wold, Solving the Loewner PDE in complete hyperbolic starlike domains of \({\mathbb{C}}^{N}\), Adv. Math. 242, 209–216 (2013)

    MathSciNet  Google Scholar 

  20. L. Arosio, F. Bracci, H. Hamada, G. Kohr, An abstract approach to Löwner chains. J. Anal. Math. 119(1), 89–114 (2013)

    MathSciNet  MATH  Google Scholar 

  21. K. Astala, P. Jones, A. Kupiainen, E. Saksman, Random curves by conformal welding. Compt. Rend. Math. 348(5–6), 257–262 (2010)

    MathSciNet  MATH  Google Scholar 

  22. O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  23. M. Bauer, D. Bernard, SLE k growth processes and conformal field theories. Phys. Lett. B 543(1–2), 135–138 (2002)

    MathSciNet  MATH  Google Scholar 

  24. M. Bauer, D. Bernard, Conformal field theories of stochastic Loewner evolutions. Comm. Math. Phys. 239(3), 493–521 (2003)

    MathSciNet  MATH  Google Scholar 

  25. R.O. Bauer, R.M. Friedrich, On radial stochastic Loewner evolution in multiply connected domains. J. Funct. Anal. 237, 565–588 (2006)

    MathSciNet  MATH  Google Scholar 

  26. R.O. Bauer, R.M. Friedrich, On chordal and bilateral SLE in multiply connected domains. Math. Z. 258, 241–265 (2008)

    MathSciNet  MATH  Google Scholar 

  27. J. Basilewitsch, Sur les théorèmes de Koebe-Bieberbach. Rec. Math. [Mat. Sbornik] N.S. 1(43)(3), 283–291 (1936)

    Google Scholar 

  28. J. Basilewitsch, D’une propriété extrémale de la fonction \(F(z) = \frac{z} {{(1-z)}^{2}}\). Rec. Math. [Mat. Sbornik] N.S. 12(54)(3), 315–319 (1943)

    Google Scholar 

  29. I.E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. N.S. 37(79), 471–476 (1955)

    Google Scholar 

  30. I.E. Bazilevič, Generalization of an integral formula for a subclass of univalent functions. Mat. Sb. N.S. 64 (106), 628–630 (1964)

    Google Scholar 

  31. J. Becker, Löwnersche, Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J. Reine Angew. Math. 255, 23–43 (1972)

    MATH  Google Scholar 

  32. J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete. J. Reine Angew. Math. 354, 74–94 (1984)

    MathSciNet  MATH  Google Scholar 

  33. V. Beffara, The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)

    MathSciNet  MATH  Google Scholar 

  34. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)

    MathSciNet  MATH  Google Scholar 

  35. E. Berkovich, B. Shein, Odyssey of Fritz Noether. Epilogue, Notes in Jewish History (2009), no. 11(114), July

    Google Scholar 

  36. E. Berkson, H. Porta, Semigroups of holomorphic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)

    MathSciNet  MATH  Google Scholar 

  37. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Ein- heitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 940–955 (1916)

    Google Scholar 

  38. Bill of indictment on L.A. Vishnevskiĭ. February 15, 1938. Novosibirsk

    Google Scholar 

  39. K.I. Bobenko, On the theory of extremal problems for univalent functions of class S. Trudy Mat. Inst. Steklov. vol. 101 (Izdat. “Nauka”, Moscow, 1972)

    Google Scholar 

  40. E. Bombieri, On the local maximum property of the Koebe function. Inv. Math. 4, 26–67 (1967)

    MathSciNet  MATH  Google Scholar 

  41. F. Bracci, M. D. Contreras, S. Díaz-Madrigal, Pluripotential theory, semigroups and boundary behaviour of infinitesimal generators in strongly convex domains. J. Eur. Math. Soc. 12, 23–53 (2010)

    MATH  Google Scholar 

  42. F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Evolution families and the Löwner equation I: the unit disk. J. Reine Angew. Math. 672, 1–37 (2012)

    MathSciNet  MATH  Google Scholar 

  43. F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, Evolution Families and the Löwner Equation II: complex hyperbolic manifolds. Math. Ann. 344, 947–962 (2009)

    MathSciNet  MATH  Google Scholar 

  44. F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Semigroups versus evolution families in the Löwner theory. J. Anal. Math. 115(1), 273–292 (2011)

    MathSciNet  Google Scholar 

  45. L. de Branges, A proof of the Bieberbach conjecture. Preprint E-5-84, Leningrad Branch of the Steklov Institute of Mathematics, LOMI, Leningrad, 1984

    Google Scholar 

  46. L. de Branges, A proof of the Bieberbach conjecture. Acta Math. 154(1–2), 137–152 (1985)

    MathSciNet  MATH  Google Scholar 

  47. D. Bshouty, W. Hengartner, A variation of the Koebe mapping in a dense subset of S. Can. J. Math. 39(7), 54–73 (1987)

    Google Scholar 

  48. J. Cardy, Boundary conformal field theory, in Encyclopedia of Mathematical Physics, ed. by J.-P. Francoise, G. Naber, S. Tsun Tsou (Elsevier, Amsterdam, 2006), pp. 333–340

    Google Scholar 

  49. L. Carleson, N. Makarov, Aggregation in the plane and Loewner’s equation. Comm. Math. Phys. 216, 583–607 (2001)

    MathSciNet  MATH  Google Scholar 

  50. A. Carverhill, Flows of stochastic dynamical systems: ergodic theory. Stochastics 14(4), 273–317 (1985)

    MathSciNet  MATH  Google Scholar 

  51. D.Y.C. Chan, B.D. Hughes, L. Paterson, Ch. Sirakoff, Simulating flow in porous media. Phys. Rev. A 38(8), 4106–4120 (1988)

    MathSciNet  Google Scholar 

  52. D. Chelkak, S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    MathSciNet  MATH  Google Scholar 

  53. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Löwner chains in the unit disk. Rev. Mat. Iberoam. 26(3), 975–1012 (2010)

    MathSciNet  MATH  Google Scholar 

  54. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Local duality in Löwner equations. J. Nonlinear Convex Anal. (to appear). Available in http://arxiv.org/pdf/1202.2334.pdf

  55. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus I: evolution families and differential equations. Trans. Am. Math. Soc. 365, 2505–2543 (2013)

    MATH  Google Scholar 

  56. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus II: Loewner chains. Anal. Math. Phys. 1, 351–385 (2011)

    MathSciNet  MATH  Google Scholar 

  57. J. Conway, Functions of One Complex Variable II (Springer, New York, 1995)

    MATH  Google Scholar 

  58. E. Date, M. Kashiwara, T. Miwa, Vertex operators and functions: transformation groups for soliton equations II. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 387–392 (1981)

    MathSciNet  MATH  Google Scholar 

  59. E. Date, M. Kashiwara, M. Jimbo, T. Miwa, Transformation groups for soliton equations. Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981) (World Sci. Publishing, Singapore, 1983), pp. 39–119

    Google Scholar 

  60. B. Davidovitch, H.G.E. Hentschel, Z. Olami, I. Procaccia, L.M. Sander, E. Somfai, Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E 59(2), 1368–1378 (1999)

    MathSciNet  Google Scholar 

  61. B. Davidovitch, M.J. Feigenbaum, H.G.E. Hentschel, I. Procaccia, Conformal dynamics of fractal growth patterns without randomness. Phys. Rev. E 62(2), 1706–1715 (2000)

    Google Scholar 

  62. A. Dick, Emmy Noether. 1882–1935 (Birkhäuser, Basel, 1970)

    Google Scholar 

  63. L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd edn. Advanced Series in Mathematical Physics, vol. 26 (World Scientific, Singapore, 2003)

    Google Scholar 

  64. R.G. Douglas, Banach Algebra Techniques in Operator Theory, 2nd edn. Graduate Texts in Mathematics, vol. 179. (Springer, New York, 1998)

    Google Scholar 

  65. B. Doyon, Conformal loop ensembles and the stress–energy tensor: I. Fundamental notions of CLE. arXiv:0903.0372 (2009)

    Google Scholar 

  66. B. Doyon, Conformal loop ensembles and the stress–energy tensor: II. Construction of the stress–energy tensor. arXiv:0908.1511 (2009)

    Google Scholar 

  67. B. Doyon, Calculus on manifolds of conformal maps and CFT. J. Phys. A Math. Theor. 45(31), 315202 (2012)

    MathSciNet  Google Scholar 

  68. P.L. Duren, H.S. Shapiro, A.L. Shields, Singular measures and domains not of Smirnov type. Duke Math. J. 33, 247–254 (1966)

    MathSciNet  MATH  Google Scholar 

  69. J. Dubédat, SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)

    MATH  Google Scholar 

  70. D.A. Dubovikov, An analog of the Loëwner equation for mappings of strip. Izv. Vyssh. Uchebn. Zaved. Mat. 51(8), 77–80 2007 (Russian); translation in Russian Math. (Iz. VUZ) 51(8), 74–77 (2007)

    Google Scholar 

  71. P.L. Duren, M. Schiffer, The theory of the second variation in extremum problems for univalent functions. J. Anal. Math. 10, 193–252 (1962/1963)

    Google Scholar 

  72. P.L. Duren, Univalent Functions (Springer, New York, 1983)

    MATH  Google Scholar 

  73. C.J. Earle, A.L. Epstein, Quasiconformal variation of slit domains. Proc. Am. Math. Soc. 129(11), 3363–3372 (2001)

    MathSciNet  MATH  Google Scholar 

  74. L.D. Faddeev, Discretized Virasoro Algebra. Contemporary Mathematics, vol. 391 (American Mathematical Society, Providence, RI, 2005), pp. 59–67

    Google Scholar 

  75. M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8(2), 85–89 (1933)

    Google Scholar 

  76. C.H. FitzGerald, Ch. Pommerenke, The de Branges theorem on univalent functions. Trans. Am. Math. Soc. 290, 683–690 (1985)

    MathSciNet  MATH  Google Scholar 

  77. J.E. Fornæss, N. Sibony, Increasing sequences of complex manifolds. Math. Ann. 255, 351–360 (1981)

    MathSciNet  MATH  Google Scholar 

  78. J.E. Fornæss, B. Stensønes, Stable manifolds of holomorphic hyperbolic maps. Int. J. Math. 15(8), 749–758 (2004)

    MATH  Google Scholar 

  79. S. Friedland, M. Schiffer, Global results in control theory with applications to univalent functions. Bull. Am. Math. Soc. 82, 913–915 (1976)

    MathSciNet  MATH  Google Scholar 

  80. S. Friedland, M. Schiffer, On coefficient regions of univalent functions. J. Anal. Math. 31, 125–168 (1977)

    MathSciNet  MATH  Google Scholar 

  81. R. Friedrich, The global geometry of stochastic Loewner evolutions. Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57 (Mathematical Society of Japan, Tokyo, 2010), pp. 79–117

    Google Scholar 

  82. R. Friedrich, W. Werner, Conformal restriction, highest-weight representations and SLE. Comm. Math. Phys. 243(1), 105–122 (2003)

    MathSciNet  MATH  Google Scholar 

  83. L.A. Galin, Unsteady filtration with a free surface. Dokl. Akad. Nauk USSR 47, 246–249 (1945). (in Russian)

    MathSciNet  MATH  Google Scholar 

  84. R.V. Gamkrelidze, Foundations of Optimal Control Theory (Tbilisi University, Tbilisi, 1977)

    Google Scholar 

  85. P.R. Garabedian, M.A. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 4, 427–465 (1955)

    MathSciNet  MATH  Google Scholar 

  86. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974)

    MathSciNet  MATH  Google Scholar 

  87. F.W. Gehring, E. Reich, Area distortion under quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I 388, 1–14 (1966)

    MathSciNet  Google Scholar 

  88. J.-L. Gervais, Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets. Phys. Lett. B 160(4–5), 277–278 (1985)

    MathSciNet  Google Scholar 

  89. l. Gibbons, S.P. Tsarev, Conformal maps and reductions of the Benney equations. Phys. Lett. A 258(4–6), 263–271 (1999)

    Google Scholar 

  90. G.M. Goluzin, Über die Verzerrungssätze der schlichten konformen Abbildungen. Rec. Math. [Mat. Sbornik] N.S. 1(34)(1), 127–135 (1936)

    Google Scholar 

  91. G.M. Goluzin, Sur les théorèmes de rotation dans la théorie des fonctions univalentes. Rec. Math. [Mat. Sbornik] N.S. 1(43)(1), 293–296 (1936)

    Google Scholar 

  92. G.M. Goluzin, On the parametric representation of functions univalent in a ring. Mat. Sbornik N.S. 29(71), 469–476 (1951)

    Google Scholar 

  93. G.M. Goluzin, Geometrical Theory of Functions of a Complex Variable, 2nd edn. (Nauka, Moscow, 1966)

    Google Scholar 

  94. G. S. Goodman, Pontryagins Maximal Principle as a variational method in conformal mapping. Abstracts of Brief Scientific Communications, sec. 13 (ICM Moscow, 1966), pp. 7–8

    Google Scholar 

  95. G.S. Goodman, Univalent functions and optimal control, Ph.D. Thesis, Stanford University, 1968

    Google Scholar 

  96. V.V. Goryainov, V.Ya. Gutlyanskiĭ, Extremal Problems in the Class S M , Mathematics collection (Russian) (Izdat. “Naukova Dumka”, Kiev, 1976), pp. 242–246

    Google Scholar 

  97. V.V. Gorjainov, On a parametric method of the theory of univalent functions. Math. Notes 27(3–4), 275–279 (1980)

    MathSciNet  Google Scholar 

  98. V.V. Gorjainov, Boundary functions of a system of functionals composed of values of a univalent function and its derivative. Soviet Math. (Iz. VUZ) 26(7), 91–94 (1982)

    Google Scholar 

  99. V.V. Gorjainov, Extremals in Estimates of Functionals Depending on Values of a Univalent Function and Its Derivative. Theory of Mappings and Approximation of Functions (“Naukova Dumka”, Kiev, 1983), pp. 38–49

    Google Scholar 

  100. V.V. Gorjainov, The Parametric Method and Extremal Conformal Mappings. Soviet Math. Dokl. 28(1), 205–208 (1983)

    Google Scholar 

  101. V.V. Goryainov, Semigroups of conformal mappings. Mat. Sb. (N.S.) 129(171)(4), 451–472 (1986) (Russian); translation in Math. USSR Sbornik 57, 463–483 (1987)

    Google Scholar 

  102. V.V. Goryajnov, Evolution families of analytic functions and time-inhomogeneous Markov branching processes. Dokl. Akad. Nauk 347(6) 729–731 (1996); translation in Dokl. Math. 53(2), 256–258 (1996)

    Google Scholar 

  103. V.V. Goryainov, The Löwner – Kufarev equation and extremal problems for conformal mappings with fixed points on the boundary (in Russian). Talk at the International Workshop on Complex Analysis and its Applications, Steklov Mathematical Institute, Moscow, 26 December 2011

    Google Scholar 

  104. V.V. Goryainov, I. Ba, Semigroups of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity. Ukrainian Math. J. 44, 1209–1217 (1992)

    MathSciNet  Google Scholar 

  105. V.V. Goryainov, O.S. Kudryavtseva, One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (Russian); translation in Sbornik: Mathematics 202(7), 971–1000 (2011)

    Google Scholar 

  106. V.V. Goryainov, Semigroups of analytic functions in analysis and applications. Uspekhi Mat. Nauk 67(6), 5–52 (2012)

    MathSciNet  Google Scholar 

  107. I. Graham, H. Hamada, G. Kohr, Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002)

    MathSciNet  MATH  Google Scholar 

  108. I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel Dekker, New York, 2003)

    MATH  Google Scholar 

  109. I. Graham, H. Hamada, G. Kohr, M. Kohr, Asymptotically spirallike mappings in several complex variables. J. Anal. Math. 105 267–302 (2008)

    MathSciNet  MATH  Google Scholar 

  110. I. Graham, G. Kohr, J.A. Pfaltzgraff, The general solution of the Loewner differential equation on the unit ball in \({\mathbb{C}}^{n}\). Contemp. Math. (AMS) 382, 191–203 (2005)

    MathSciNet  Google Scholar 

  111. I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel Dekker, New York, 2003)

    MATH  Google Scholar 

  112. R. Greiner, O. Roth, On support points of univalent functions and a disproof of a conjecture of Bombieri. Proc. Am. Math. Soc. 129(12), 3657–3664 (2001)

    MathSciNet  MATH  Google Scholar 

  113. D. Grier, E. Ben-Jacob, R. Clarke, L.M. Sander, Morphology and Microstructure in Electrochemical Deposition of Zinc. Phys. Rev. Lett. 56, 1264–1267 (1986)

    Google Scholar 

  114. B. Gustafsson, A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells (Birkhäuser, Basel, 2006)

    Google Scholar 

  115. V.Ya. Gutlyanskiĭ, Parametric representation of univalent functions. Dokl. Akad. Nauk SSSR 194, 750–753 (1970)

    Google Scholar 

  116. V.Ya. Gutljanskĭ, Parametric Representations and Extremal Problems in the Theory of Univalent Functions (in Russian), Dissertation Dokt. Fiz.-Mat. Nauk, Mat. Inst. Akad. Nauk Ukrain. SSR, Kiev, 1972

    Google Scholar 

  117. H. Hamada, G. Kohr, J.R. Muir, Extension of L d-Loewner chains to higher dimensions. J. Anal. Math. 120(1), 357–392 (2013)

    MathSciNet  Google Scholar 

  118. T.E. Harris, The Theory of Branching Processes. Corrected reprint of the 1963 original, Dover Phoenix Editions (Dover Publications, Mineola, NY, 2002)

    Google Scholar 

  119. T.C. Halsey, Diffusion-Limited Aggregation: A Model for Pattern Formation. Phys. Today 53(11), 36 (2000)

    Google Scholar 

  120. M.B. Hastings, Renormalization theory of stochastic growth. Phys. Rev. E 55(1), 135–152 (1987)

    MathSciNet  Google Scholar 

  121. M.B. Hastings, L.S. Levitov, Laplacian growth as one-dimensional turbulence. Phys. D 116(1–2), 244–252 (1998)

    MATH  Google Scholar 

  122. W.K. Hayman, Multivalent Functions (Cambridge University Press, Cambridge, 1958)

    MATH  Google Scholar 

  123. M.H. Heins, Semigroups of holomorphic maps of a Riemann surface into itself which are homomorphs of the set of positive reals considered additively, in E.B. Christoffel—The Influence of His Work on Mathematics and the Physical Sciences (Bikhäuser, Basel, 1981), pp. 314–331

    Google Scholar 

  124. H.S. Hele-Shaw, The flow of water. Nature 58, 33–36 (1898)

    Google Scholar 

  125. Yu.E. Hohlov, S.D. Howison, C. Huntingford, J.R. Ockendon, A.A. Lacey, A model for non-smooth free boundaries in Hele-Shaw flows. Q. J. Mech. Appl. Math. 47, 107–128 (1994)

    MathSciNet  Google Scholar 

  126. G. Ivanov, A. Vasil’ev, Lwner evolution driven by a stochastic boundary point. Anal. Math. Phys. 1(4), 387–412 (2011)

    Google Scholar 

  127. G. Ivanov, D. Prokhorov, A. Vasil’ev, Non-slit and singular solutions to the Loewner equation. Bull. Sci. Math. 136(3), 328–341 (2012)

    Google Scholar 

  128. V.G. Kac, Simple irreducible graded Lie algebras of finite growth. Math. USSR Izv. 2, 1271–1311 (1968); Izv. Akad. Nauk USSR Ser. Mat. 32, 1923–1967 (1968)

    Google Scholar 

  129. W. Kager, B. Nienhuis, L.P. Kadanoff, Exact solutions for Löwner evolutions. J. Stat. Phys. 115(3–4), 805–822 (2004)

    MathSciNet  MATH  Google Scholar 

  130. N.-G. Kang, N.G. Makarov, Gaussian free field and conformal field theory. arXiv: 1101.1024 [math.PR], 2011

    Google Scholar 

  131. N.-G. Kang, N.G. Makarov, Radial SLE martingale-observables. arXiv:1209.1615 [math.PR], 2012

    Google Scholar 

  132. H. Kesten, Hitting probabilities of random walks on \({\mathbb{Z}}^{d}\). Stoch. Proc. Appl. 25, 165–184 (1987)

    MathSciNet  MATH  Google Scholar 

  133. A.A. Kirillov, D.V. Yuriev, Representations of the Virasoro algebra by the orbit method. J. Geom. Phys. 5(3), 351–363 (1988)

    MathSciNet  MATH  Google Scholar 

  134. S. Kobayashi, Hyperbolic Complex Spaces (Springer, Berlin Heidelberg, 1998)

    MATH  Google Scholar 

  135. Y. Komatu, Über eine Verschärfung des Löwnerschen Hilfssatzes. Proc. Imp. Acad. Tokyo 18, 354–359 (1942)

    MathSciNet  MATH  Google Scholar 

  136. Y. Komatu, On conformal slit mapping of multiply-connected domains. Proc. Jpn. Acad. 26(7), 26–31 (1950)

    MathSciNet  MATH  Google Scholar 

  137. E.L. Korotyaev, P. Kargaev, Inverse problems generated by conformal mappings on complex plane with parallel slits. 2009, unpublished preprint.

    Google Scholar 

  138. E.L. Korotyaev, P. Kargaev, Estimates for periodic Zakharov–Shabat operators. J. Differ. Equat. 249, 76–93 (2010)

    MathSciNet  MATH  Google Scholar 

  139. E.L. Korotyaev, S. Kuksin, KdV Hamiltonian as function of actions. arXiv 1110.4475, 2011

    Google Scholar 

  140. I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, The τ-function for analytic curves. Random Matrix Models and Their Applications. Mathematical Sciences Research Institute Publications, vol. 40 (Cambridge University Press, Cambridge, 2001), pp. 285–299

    Google Scholar 

  141. I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Laplacian growth and Whitham equations of soliton theory. Phys. D 198(1–2), 1–28 (2004)

    MathSciNet  MATH  Google Scholar 

  142. I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Comm. Math. Phys. 259(1), 1–44 (2005)

    MathSciNet  MATH  Google Scholar 

  143. J. Krzyż, The radius of close-to-convexity within the family of univalent functions. Bull. Acad. Polon. Sci. 10, 201–204 (1962)

    MATH  Google Scholar 

  144. P.P. Kufarev, On one-parameter families of analytic functions. Rec. Math. [Mat. Sbornik] N.S. 13(55), 87–118 (1943)

    Google Scholar 

  145. P.P. Kufarev, On integrals of a simplest differential equation with movable polar singularity in the right-hand side. Tomsk. Gos. Univ. Uchen. Zap. 1, 35–48 (1946)

    Google Scholar 

  146. P.P. Kufarev, Theorem on solutions to some differential equation. Tomsk. Gos. Univ. Učenye Zapiski 5, 20–21 (1947)

    Google Scholar 

  147. P.P. Kufarev, A remark on integrals of Löwner’s equation. Dokl. Akad. Nauk SSSR (N.S.) 57, 655–656 (1947)

    Google Scholar 

  148. P.P. Kufarev, On conformal mapping of complementary regions. Dokl. Akad. Nauk SSSR (N.S.) 73(5), 881–884 (1950)

    Google Scholar 

  149. P.P. Kufarev, A.E. Fales, On an extremal problem for complementary regions. Dokl. Akad. Nauk SSSR (N.S.) 81(6), 995–998 (1950)

    Google Scholar 

  150. P.P. Kufarev, A.E. Fales, On an extremal problem for complementary regions. Tomsk. Gos. Univ. Ucen. Zap. 17, 25–35 (1947)

    Google Scholar 

  151. P.P. Kufarev, V.V. Sobolev, L.V. Sporysheva, A certain method of investigation of extremal problems for functions that are univalent in the half-plane. Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200, 142–164 (1968)

    MathSciNet  Google Scholar 

  152. M.P. Kuvaev, P.P. Kufarev, An equation of Löwner’s type for multiply connected regions. Tomsk. Gos. Univ. Uv. c. Zap. Mat. Meh. 25, 19–34 (1955)

    MathSciNet  Google Scholar 

  153. G.V. Kuz’mina, Moduli of families of curves and quadratic differentials. Trudy Mat. Inst. Steklov. 139, 241 (1980)

    Google Scholar 

  154. M.A. Lavrent’ev, To the theory of conformal maps. Trav. Inst. Math. Stekloff 5, 159–245 (1934)

    Google Scholar 

  155. G.F. Lawler, An introduction to the stochastic Loewner evolution, in Random Walks and Geometry, ed. by V. Kaimonovich (de Gruyter, Berlin, 2004), pp. 261–293

    Google Scholar 

  156. G.F. Lawler, Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, vol. 114 (American Mathematical Society, Providence, RI, 2005)

    Google Scholar 

  157. G. Lawler, O. Schramm, W. Werner, Values of Brownian Intersection Exponents. I. Half-plane Exponents. Acta Math. 187(2), 237–273 (2001); Values of Brownian intersection exponents. II. Plane exponents. Acta Math. 187(2), 275–308 (2001); Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. H. Poincaré. Probab. Statist. 38(1), 109–123 (2002)

    Google Scholar 

  158. N.A. Lebedev, On parametric representation of functions regular and univalent in a ring (in Russian). Dokl. Akad. Nauk SSSR (N.S.) 103, 767–768 (1955)

    Google Scholar 

  159. N.A. Lebedev, The Area Principle in the Theory of Univalent Functions (Izdat. “Nauka”, Moscow, 1975)

    Google Scholar 

  160. P. Lévy, Processus Stochastiques et Mouvement Brownian (Gauthier-Villars, Paris, 1947)

    Google Scholar 

  161. E.P. Li, On the theory of univalent functions on a circular ring. Dokl. Akad. Nauk SSSR (N.S.) 92, 475–477 (1953)

    Google Scholar 

  162. J. Lind, A sharp condition for the Löwner equation to generate slits. Ann. Acad. Sci. Fenn. Math. 30(1), 143–158 (2005)

    MathSciNet  MATH  Google Scholar 

  163. J. Lind, D. Marshall, S. Rohde, Collisions and spirals of Loewner traces. Duke Math. J. 154(3), 527–573 (2010)

    MathSciNet  MATH  Google Scholar 

  164. J.E. Littlewood, R.E.A.C. Paley, A proof that an odd schlicht function has bounded coefficients. J. Lond. Math. Soc. 7, 167–169 (1932)

    Google Scholar 

  165. K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)

    MathSciNet  MATH  Google Scholar 

  166. K. Löwner, Über monotone Matrixfunktionen. Math. Z. 38, 177–216 (1934)

    MathSciNet  Google Scholar 

  167. Ch. Loewner, Conservation laws in compressible fluid flow and associated mapping. J. Ration. Mech. Anal. 2, 537–561 (1953)

    MathSciNet  MATH  Google Scholar 

  168. B. Mandelbrot, Fractal aspects of the iteration of z → λ z(1 − z) for complex λ and z, in Non-Linear Dynamics, ed. by Robert H.G. Helleman. Annals of the New York Academy of Sciences, vol. 357 (New York Academy of Sciences, New York, 1979), pp. 249–259

    Google Scholar 

  169. I. Markina, D. Prokhorov, A. Vasil’ev, Sub-Riemannian geometry of the coefficients of univalent functions. J. Funct. Anal. 245(2), 475–492 (2007)

    Google Scholar 

  170. I. Markina, A. Vasil’ev, Virasoro algebra and dynamics in the space of univalent functions. Contemp. Math. 525, 85–116 (2010)

    Google Scholar 

  171. I. Markina, A. Vasil’ev, Evolution of smooth shapes and integrable systems. ArXiv: 1108.1007 [math-ph], 2011, pp. 25

    Google Scholar 

  172. A. Marshakov, P. Wiegmann, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in two dimensions. Comm. Math. Phys. 227(1), 131–153 (2002)

    MathSciNet  MATH  Google Scholar 

  173. D.E. Marshall, S. Rohde, The Löwner differential equation and slit mappings. J. Am. Math. Soc. 18(4), 763–778 (2005)

    MathSciNet  MATH  Google Scholar 

  174. M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, Integrable structure of interface dynamics. Phys. Rev. Lett. 84(22), 5106–5109 (2000)

    Google Scholar 

  175. M. Mineev-Weinstein, A. Zabrodin, Whitham-Toda hierarchy in the Laplacian growth problem. J. Nonlinear Math. Phys. 8, 212–218 (2001)

    MathSciNet  MATH  Google Scholar 

  176. R.V. Moody, A new class of Lie algebras. J. Algebra 10, 211–230 (1968)

    MathSciNet  Google Scholar 

  177. J. Muñoz Porras, F. Pablos Romo, Generalized reciprocity laws. Trans. Am. Math. Soc. 360(7), 3473–3492 (2008)

    MATH  Google Scholar 

  178. E. Nelson, The free Markov field. J. Funct. Anal. 12, 221–227 (1973)

    Google Scholar 

  179. L. Niemeyer, L. Pietronero, H.J. Wiessmann, Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984)

    MathSciNet  Google Scholar 

  180. J. O’Connor, E.F. Robertson, Charles Loewner, MacTutor History of Mathematics archive, University of St Andrews

    Google Scholar 

  181. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Comm. Math. Phys. 31, 83–112 (1973); 42, 281–305 (1975)

    Google Scholar 

  182. E. Peschl, Zur Theorie der schlichten Funktionen. J. Reine Angew. Math. 176, 61–94 (1936)

    Google Scholar 

  183. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, 1995)

    Google Scholar 

  184. J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in \({\mathbb{C}}^{n}\). Math. Ann. 210, 55–68 (1974)

    MathSciNet  MATH  Google Scholar 

  185. J.A. Pfaltzgraff, Subordination chains and quasiconformal extension of holomorphic maps in \({\mathbb{C}}^{n}\). Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 13–25 (1975)

    MathSciNet  MATH  Google Scholar 

  186. G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet. S.-B. Kaiserl. Akad. Wiss. Wien, Math.-Natur. Kl. Abt. II a 126, 247–263 (1917)

    Google Scholar 

  187. P.Ya. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR 47(4), 254–257 (1945)

    Google Scholar 

  188. P.Ya. Polubarinova-Kochina, Concerning unsteady motions in the theory of filtration. Prikl. Matem. Mech. 9(1), 79–90 (1945)

    Google Scholar 

  189. Ch. Pommerenke, Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MathSciNet  MATH  Google Scholar 

  190. Ch. Pommerenke, Univalent Functions, with a Chapter on Quadratic Differentials by G. Jensen (Vandenhoeck & Ruprecht, Göttingen, 1975)

    Google Scholar 

  191. Ch. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, Berlin, 1992)

    MATH  Google Scholar 

  192. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (A Pergamon Press Book. The Macmillan Co., New York, 1964)

    MATH  Google Scholar 

  193. T. Poreda, On generalized differential equations in Banach spaces. Diss. Math. 310, 1–50 (1991)

    MathSciNet  Google Scholar 

  194. V.I. Popov, The range of a system of functionals on the class S. Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 182(3), 106–132 (1965)

    Google Scholar 

  195. V.I. Popov, L.S. Pontrjagin’s maximum principle in the theory of univalent functions. Dokl. Akad. Nauk SSSR 188, 532–534 (1969)

    Google Scholar 

  196. N.V. Popova, Connection between the Löwner equation and the equation \(\frac{\mathit{dw}} {\mathit{dt}} = \frac{1} {w-\lambda (t)}\). Izv. Acad. Sci. Belorussian SSR 6, 97–98 (1954)

    Google Scholar 

  197. A. Pressley, G. Segal, Loop Groups. Oxford Mathematical Monographs (Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986)

    MATH  Google Scholar 

  198. D.V. Prokhorov, The geometric characterization of functions from Bazilevič subclasses. Sov. Math. (Iz. VUZ) 19(2), 106–107 (1975)

    Google Scholar 

  199. D.V. Prokhorov, Optimal control method in an extremal problem on the class of univalent functions. Dokl. Akad. Nauk SSSR 275(4), 798–801 (1984)

    MathSciNet  Google Scholar 

  200. D.V. Prokhorov, Value sets for systems of functionals in the classes of univalent functions. Mat. Sb. 181(12), 1659–1677 (1990)

    MATH  Google Scholar 

  201. D.V. Prokhorov, The value set of initial coefficients for bounded univalent typically real functions. Sib. Mat. Zh. 32(5), 132–141 (1990)

    MathSciNet  Google Scholar 

  202. D.V. Prokhorov, Reachable Set Methods in Extremal Problems for Univalent Functions (Saratov University, Saratov, 1993)

    MATH  Google Scholar 

  203. D.V. Prokhorov, Even coefficient estimates for bounded univalent functions. Ann. Polon. Math. 58(3), 267–273 (1993)

    MathSciNet  MATH  Google Scholar 

  204. D.V. Prokhorov, Coefficients of functions close to the identity function. Complex Variables Theor. Appl. 33(1–4), 255–263 (1997)

    MathSciNet  MATH  Google Scholar 

  205. D.V. Prokhorov, Coefficients of holomorphic functions. Complex analysis and representation theory, 2. J. Math. Sci. (New York) 106(6), 3518–3544 (2001)

    Google Scholar 

  206. D.V. Prokhorov, A.A. Nikulin, Asymptotic estimates for the coefficients of bounded univalent functions. Sibirsk. Mat. Zh. 47(5), 1128–1138 (2006)

    MathSciNet  MATH  Google Scholar 

  207. D. Prokhorov, A. Vasil’ev, Univalent functions and integrable systems. Comm. Math. Phys. 262(2), 393–410 (2006)

    Google Scholar 

  208. D. Prokhorov, A. Vasil’ev, Optimal control in Bombieri’s and Tammi’s conjectures. Georgian Math. J. 12(4), 743–761 (2005)

    Google Scholar 

  209. D. Prokhorov, A. Vasil’ev, Singular and tangent slit solutions to the Löwner equation, in Analysis and Mathematical Physics, Trends in Mathematics (Birkhäuser, Basel, 2009), pp. 455–463

    Google Scholar 

  210. M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic Press, New York, 1980), p. 400

    MATH  Google Scholar 

  211. S. Reich, D Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups. Abstr. Appl. Anal. 3(1–2), 203–228 (1998)

    MathSciNet  MATH  Google Scholar 

  212. S. Reich, D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces (Imperial College Press, London, 2005)

    MATH  Google Scholar 

  213. M.S. Robertson, A remark in the odd schlicht functions. Bull. Am. Math. Soc. 42(6), 366–370 (1936)

    Google Scholar 

  214. M.S. Robertson, Applications of the subordination principle to univalent functions. Pacific J. Math. 11, 315–324 (1961)

    MathSciNet  MATH  Google Scholar 

  215. R.M. Robinson, Bounded univalent functions. Trans. Am. Math. Soc. 52, 426–449 (1942)

    MATH  Google Scholar 

  216. S. Rohde, O. Schramm, Basic properties of SLE. Ann. Math. 161(2), 883–924 (2005)

    MathSciNet  MATH  Google Scholar 

  217. S. Rohde, Oded Schramm: from circle packing to SLE. Ann. Probab. 39(5), 1621–1667 (2011)

    MathSciNet  MATH  Google Scholar 

  218. M. Rosenblum, J. Rovnyak, Topics in Hardy Classes and Univalent Functions (Birkhäuser Verlag, Basel, 1994)

    MATH  Google Scholar 

  219. M. Röckner, Markov property of generalized fields and axiomatic potential theory. Math. Ann. 264, 153–177 (1983)

    MathSciNet  MATH  Google Scholar 

  220. M. Röckner, Generalized Markov fields and Dirichlet forms. Acta Applicandae Math. 3, 285–311 (1985)

    MATH  Google Scholar 

  221. I. Rushkin, E. Bettelheim, I.A. Gruzberg, P. Wiegmann, Critical curves in conformally invariant statistical systems. J. Phys. A Math. Theor. 40, 2165–2195 (2007)

    MathSciNet  MATH  Google Scholar 

  222. M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear Partial Differential Equations in Applied Science Tokyo, 1982. North-Holland Mathematics Studies, vol. 81 (North-Holland, Amsterdam, 1983), pp. 259–271

    Google Scholar 

  223. A. Savakis, S. Maggelakis, Models of shrinking clusters with applications to epidermal wound healing. Math. Comput. Model. 25(6), 1–6 (1997)

    MATH  Google Scholar 

  224. G. Segal, G. Wilson, Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)

    MathSciNet  MATH  Google Scholar 

  225. A.C. Schaeffer, D.C. Spencer, The coefficients of schlicht functions. II 12, 107–125 (1945)

    MathSciNet  MATH  Google Scholar 

  226. A.C. Schaeffer, D.C. Spencer, Coefficient Regions for Schlicht Functions. American Mathematical Society Colloquium Publications, vol. 35 (American Mathematical Society, New York, NY, 1950)

    Google Scholar 

  227. M. Schiffer, D.C. Spencer, Functionals of Finite Riemann Surfaces (Princeton University Press, Princeton, NJ, 1954)

    MATH  Google Scholar 

  228. M. Schiffer, O. Tammi, On the fourth coefficient of bounded univalent functions. Trans. Am. Math. Soc. 119(1965), 67–78

    MathSciNet  MATH  Google Scholar 

  229. M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, 2nd edn. Lecture Notes in Physics, vol. 759 (Springer, Berlin, 2008)

    Google Scholar 

  230. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    MathSciNet  MATH  Google Scholar 

  231. O. Schramm, S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    MathSciNet  MATH  Google Scholar 

  232. O. Schramm, S. Sheffield, A contour line of the continuum Gaussian free field. arXiv: 1008.2447, 2010

    Google Scholar 

  233. D.-S. Shah, Le-le Fan, On the parametric representation of quasi-conformal mappings. Sci. Sin. 11, 149–162 (1962)

    MATH  Google Scholar 

  234. S. Sheffield, Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009)

    MathSciNet  MATH  Google Scholar 

  235. T. Sheil-Small, Some remarks on Bazilevič functions. J. Anal. Math. 43, 1–11 (1983/1984)

    Google Scholar 

  236. B.M. Shein, Private communication, 2012

    Google Scholar 

  237. L. Siewierski, Sharp estimation of the coefficients of bounded univalent functions close to identity. Diss. Math. 86, 1–153 (1971)

    MathSciNet  Google Scholar 

  238. A.G. Siskakis, Semigroups of composition operators and the Cesàro operator on H p(D), PhD Thesis, University of Illinois, 1985

    Google Scholar 

  239. A.G. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review. Contemp. Math. 213, 229–252 (1998)

    MathSciNet  Google Scholar 

  240. S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239–244 (2001)

    MATH  Google Scholar 

  241. T.T. Soong, Random Differential Equations in Science and Engineering. Mathematics in Science and Engineering, vol. 103 (Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1973)

    Google Scholar 

  242. Lad. Špaček, Contribution à la théorie des fonctions univalentes. Čas. Mat. Fys. 62(2), 12–19 (1932)

    Google Scholar 

  243. T. Takebe, L.-P. Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies. J. Phys. A 39(37), 11479–11501 (2006)

    MathSciNet  MATH  Google Scholar 

  244. O. Tammi, On the maximalization of the coefficient a 3 of bounded schlicht functions. Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys. 149, 1–14 (1953)

    Google Scholar 

  245. O. Tammi, On optimizing parameters of the power inequality for a 4 in the class of bounded univalent functions. Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys. 560, 1–24 (1973)

    Google Scholar 

  246. O. Tammi, Extremal Problems for Bounded Univalent Functions, Lecture Notes in Mathematics, vol. 646 (Springer, New York, 1978)

    Google Scholar 

  247. O. Tammi, Extremal Problems for Bounded Univalent Functions, II, Lecture Notes in Mathematics, vol. 913 (Springer, New York, 1982)

    Google Scholar 

  248. F. Tricomi, Sull’iterazione delle funzioni di linee. Giorn. Math. Battaglini 55, 1–8 (1917)

    Google Scholar 

  249. J. Tsai, The Loewner driving function of trajectory arcs of quadratic differentials. J. Math. Anal. Appl. 360, 561–576 (2009)

    MathSciNet  MATH  Google Scholar 

  250. A. Vasil’ev, Mutual change of initial coefficients of univalent functions. Matemat. Zametki 38(1), 56–65 (1985)

    Google Scholar 

  251. A. Vasil’ev, Value set \(\{f(r_{1}),f(r_{2})\}\) for the class of univalent functions with real coefficients. Sib. Mat. Zh. 27(6), 28–32 (1986)

    Google Scholar 

  252. A. Vasil’ev, Optimal control methods in an extremal problem on a class of solutions of the Loewner-Kufarev equation. Diff. Uravneniya 26(3), 386–392 (1990)

    Google Scholar 

  253. A. Vasil’ev, From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal. Oper. Theor. 3(2), 551–585 (2009)

    Google Scholar 

  254. T. Vicsek, Fractal Growth Phenomena (World Scientific Publishing, Singapore, 1989)

    MATH  Google Scholar 

  255. M. Voda, Solution of a Loewner chain equation in several variables. J. Math. Anal. Appl. 375(1), 58–74 (2011)

    MathSciNet  MATH  Google Scholar 

  256. G.C. Wick, The evaluation of the collision matrix. Phys. Rev. 80(2), 268–272 (1950)

    MathSciNet  MATH  Google Scholar 

  257. P.B. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies. Comm. Math. Phys. 213(3), 523–538 (2000)

    MathSciNet  MATH  Google Scholar 

  258. A.S. Wightman, Hilberts Sixth Problem: Mathematical Treatment of the Axioms of Physics, ed. by F.E. Browder. Proceedings of Symposia in Pure Mathematics (part 1), vol. 28 (American Mathematical Society, Providence, RI, 1976), pp. 241–268

    Google Scholar 

  259. E. Witten, Quantum field theory, Grassmannians, and algebraic curves. Comm. Math. Phys. 113(4), 529–600 (1988)

    MathSciNet  Google Scholar 

  260. T.A. Witten, Jr., L.M. Sander, Diffusion-limited aggregation, and kinetic critical phenomenon. Phys. Rev. Lett. 47(2), 1400–1403 (1981)

    Google Scholar 

  261. T.A. Witten, L.M. Sander, Diffusion-limited aggregation. Phys. Rev. B 27(9), 5686–5697 (1983)

    MathSciNet  Google Scholar 

  262. N.J. Zabusky, M.D. Krushkal, Interaction of solitons in a collisionless plasma and initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  263. V.E. Zaharov, L.D. Faddeev, The Korteweg-de Vries equation is a fully integrable Hamiltonian system. Funkcional. Anal. i Prilozh. 5(5), 18–27 (1971)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Bracci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Vasil’ev, A. (2014). Classical and Stochastic Löwner–Kufarev Equations. In: Vasil'ev, A. (eds) Harmonic and Complex Analysis and its Applications. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-01806-5_2

Download citation

Publish with us

Policies and ethics