Symbolic Analysis Using Floating Pathological Elements

  • Hung-Yu WangEmail author
  • Shung-Hyung Chang
  • Nan-Hui Chiang
  • Quoc-Minh Nguyen
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 238)


The nullor-mirror pathological elements have been found useful in solving circuit analysis and design problems. They are further used to ideally represent various popular analog signal-processing properties that involve differential or multiple single-ended signals by utilizing the concept of floating mirror elements. For applying nodal analysis to the circuit containing such active devices with differential or multiple single-ended signals, we propose an efficient systematic analytical technique which directly performs symbolic analysis on the simpler RLC-nullor-floating mirror representations of circuits rather than their RLC-two-terminal pathological element-based counterparts. It releases the limitation of recently proposed symbolic analysis approaches and use simpler models which may be conductive to achieving high-performance symbolic nodal analysis. The feasibility and validity of the proposed method are demonstrated by practical circuit examples.


Pathological element RLC-nullor-floating mirror network nodal analysis (NA) symbolic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tellegen, B.D.H.: La recherche pour una série complète d’éléments de circuit ideauxnonlinéaires. Rendiconti del Seminario Matematico e Fisico di Milano 25, 134–144 (1954)CrossRefGoogle Scholar
  2. 2.
    Carlin, H.J.: Singular network elements. IEEE Trans. Circuit Theory CT-11, 67–72 (1964)Google Scholar
  3. 3.
    Schmid, H.: Approximating the universal active element. IEEE Trans. Circuits Syst. II 47(11), 1160–1169 (2000)CrossRefGoogle Scholar
  4. 4.
    Carlosena, A., Moschytz, G.S.: Nullators and norators in voltage tocurrent mode transformations. Int. J. Circuit Theory Applicat. 21(4), 421–424 (1993)CrossRefGoogle Scholar
  5. 5.
    Kumar, P., Senani, R.: Bibliography on nullors and their applications in circuit analysis, synthesis and design. Anal. Integr. Circuits Signal Process. 33(1), 65–76 (2002)CrossRefGoogle Scholar
  6. 6.
    Soliman, A.M., Saad, R.A.: The voltage mirror-current mirror pairs as a universal element. Int. J. Circuit Theory Appl. 38(8), 787–795 (2010)zbMATHGoogle Scholar
  7. 7.
    Saad, R.A., Soliman, A.M.: On the systematic synthesis of CCII-based floating simulators. Int. J. Circuit Theory Appl. 38(9), 935–967 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Saad, R.A., Soliman, A.M.: A new approach for using the pathological mirror elements in the ideal representation of active devices. Int. J. Circuit Theory Appl. 38(2), 148–178 (2010)zbMATHGoogle Scholar
  9. 9.
    Soliman, A.M.: Pathological representation of the two-output CCII and ICCII family and application. Int. J. Circuit Theory Appl. 39(6), 589–606 (2011)CrossRefGoogle Scholar
  10. 10.
    Sanchez-Lopez, C., Fernandez, F.V., Tlelo-Cuautle, E., Tan, S.X.D.: Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. I: Reg. Papers 58(6), 1382–1395 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tlelo-Cuautle, E., Sanchez-Lopez, C., Moro-Frias, D.: Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits. Int. J. Circuit Theory Appl. 38(6), 649–659 (2010)Google Scholar
  12. 12.
    Wang, H.Y., Huang, W.C., Chiang, N.H.: Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 57(11), 874–877 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, W.C., Wang, H.Y., Cheng, P.S., Lin, Y.C.: Nullor equivalents of active devices for symbolic circuit analysis. Circuits Syst. Signal Process. 31, 865–875 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ibrahim, M.A., Kuntman, H., Cicekoglu, O.: New second-order low-pass, high-pass and band-pass filters employing minimum number of active and passive elements. In: Proc. Int. Symp. Signal Circuits Syst., pp. 557–560 (2003)Google Scholar
  15. 15.
    Svoboda, J.A.: A linear active network analysis program suitable for a class project. IEEE Trans. Education E-27(1), 21–25 (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hung-Yu Wang
    • 1
    Email author
  • Shung-Hyung Chang
    • 2
  • Nan-Hui Chiang
    • 1
  • Quoc-Minh Nguyen
    • 1
  1. 1.Department of Electronic EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan, R.O.C.
  2. 2.Department of Microelectronics EngineeringNational Kaohsiung Marine UniversityKaohsiungTaiwan, R.O.C.

Personalised recommendations