Advertisement

Bio-inspired Visual Attention Model and Saliency Guided Object Segmentation

  • Lijuan Duan
  • Jili Gu
  • Zhen Yang
  • Jun Miao
  • Wei Ma
  • Chunpeng Wu
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 238)

Abstract

In this paper, we present a saliency guided image object segment method. We suppose that saliency maps can indicate informative regions, and filter out background in images. To produce perceptual satisfactory salient objects, we use our bio-inspired saliency measure which integrating three factors: dissimilarity, spatial distance and central bias to compute saliency map. Then the saliency map is used as the importance map in the salient object segment method. Experimental results demonstrate that our method outperforms previous saliency detection method, yielding higher precision (0.7669) and better recall rates (0.825), F-Measure (0.7545), when evaluated using one of the largest publicly available data sets.

Keywords

visual attention dissimilarity spatial distance central bias salient object detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE TPAMI 20, 1254–1259 (1998)CrossRefGoogle Scholar
  2. 2.
    Gao, D., Vasconcelos, N.: Bottom-Up Saliency is a Discriminant Process. In: IEEE ICCV, pp. 1–6 (2007)Google Scholar
  3. 3.
    Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency Estimation Using A Non-Parametric Low-Level Vision Model. In: IEEE CVPR, pp. 433–440 (2011)Google Scholar
  4. 4.
    Kanan, C., Cottrell, G.: Robust Classification of Objects, Faces, and Flowers Using Natural Image Statistics. In: IEEE CVPR, pp. 2472–2479 (2010)Google Scholar
  5. 5.
    Yu, H., Li, J., Tian, Y., Huang, H.: Automatic Interesting Object Extraction from Images Using Complementary Saliency Maps. ACM Multimedia, 891–894 (2010)Google Scholar
  6. 6.
    Navalpakkam, V., Itti, L.: An Intergrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed. In: IEEE CVPR, pp. 2049–2056 (2006)Google Scholar
  7. 7.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Source. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(2), 353–367 (2011)CrossRefGoogle Scholar
  8. 8.
    Rensink, R., O’Regan, K., Clark, J.: To see or not to see: The need for attention to perceive changes in scenes. Psychological Sciences (1997)Google Scholar
  9. 9.
    Han, J., Ngan, K., Li, M., Zhang, H.: Unsupervised extraction of visual attention objects in color images. IEEE Transactions on Circuits and Systems for Video Technology 16(1), 141–145 (2006)CrossRefGoogle Scholar
  10. 10.
    Ko, B.C., Nam, J.-Y.: Object-of-interest image segmentation based on human attention and semantic region clustering. Journal of Optical Society of America A 23(10), 2462–2470 (2006)CrossRefGoogle Scholar
  11. 11.
    Ma, Y.-F., Zhang, H.-J.: Contrast-based image attention analysis by using fuzzy growing. In: ACM International ConferenceGoogle Scholar
  12. 12.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009); 409, 410, 412, 413, 414, 415 on Multimedia (2003)Google Scholar
  13. 13.
    Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X.L., Hu, S.M.: Global Contrast based salient region detection. In: Proceedings of CVPR, Providence, RI, pp. 409–416 (2011)Google Scholar
  14. 14.
    Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual Saliency Detection by Spatially Weighted Dissimilarity. In: IEEE CVPR, pp. 473–480 (2011)Google Scholar
  15. 15.
    Levelthal, A.G.: The Neural Basis of Visual Function: Vision and Visual Dysfunction. CRC Press, Fla. (1991)Google Scholar
  16. 16.
    Rajashekar, U., van der Linde, I., Bovik, A.C., Cormack, L.K.: Foveated Analysis of Image Features at Fixations. Vision Research 47, 3160–3172 (2007)CrossRefGoogle Scholar
  17. 17.
    Wandell, B.A.: Foundations of vision. Sinauer Associates (1995)Google Scholar
  18. 18.
    Tatler, B.W.: The Central Fixation Bias in Scene Viewing: Selecting an Optimal Viewing Position Independently of Motor Biased and Image Feature Distributions. J. Vision 7(4), 1–17 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhao, Q., Koch, C.: Learning A Saliency Map Using Fixated Locations in Natural Scenes. J. Vision 11(9), 1–15 (2011)CrossRefGoogle Scholar
  20. 20.
    Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: IEEE Conference on Pattern Recognition (2002); Bruce, N.D.B., Tsotsos, J.K.: Saliency Based on Information Maximization. In: NIPS, pp. 155–162 (2005)Google Scholar
  21. 21.
    Hou, X., Zhang, L.: Dynamic Visual Attention: Searching for Coding Length Increments. In: NIPS, pp. 681–688 (2008)Google Scholar
  22. 22.
    Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. In: NIPS, pp. 545–552 (2006)Google Scholar
  23. 23.
    Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lijuan Duan
    • 1
  • Jili Gu
    • 1
  • Zhen Yang
    • 1
  • Jun Miao
    • 2
  • Wei Ma
    • 1
  • Chunpeng Wu
    • 3
  1. 1.College of Computer Science and TechnologyBeijing University of TechnologyBeijingChina
  2. 2.Key Laboratory of Intelligent Information ProcessingInstitute of Computing Technology, Chinese Academy of SciencesBeijingChina
  3. 3.Fujitsu Research & Development Center Co. Ltd.BeijingChina

Personalised recommendations